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Abstract

In recent years, many research activities have focused on the developments for
unmanned aerial vehicles (UAVs) due to their usefulness in providing cost-effective
solutions to dangerous, dirty and dull tasks. In many applications, it is crucial for
UAVs to be able to fly autonomously in uncertain environments under variable
operating conditions. In such circumstances, an intelligent capability of the flight
controller is a must rather than a choice. Model-free controllers propose alternative
solutions to the model-based controllers without requiring a precise system’s model
which is often either unavailable or time-consuming to obtain. One branch of
model-free methods is composed by fuzzy logic controllers (FLCs) due to their
capability of delivering excellent control in the presence of uncertainties. However,
one weakness of FLCs is that their parameters have to be tuned to deal efficiently
with uncertainties. On the other hand, neural networks are computing models which
progressively improve their performance by learning from training examples. Hence,
artificial neural networks (ANNs) and deep neural networks (DNNs) propose learning
approaches to enhance control strategies. Nevertheless, the main disadvantage of
neural networks is that their inner workings are difficult to interpret. The limitations
of fuzzy logic and neural networks were a driving force behind the creation of hybrid
systems where the combination of DNN and FLC can overcome the drawbacks of

each individual method.

This thesis focuses on the aforementioned artificial intelligence-based control meth-
ods that enable UAVs to accurately track 3D trajectories. The investigation starts
from the simplest static type-1 FLC, through interval type-2 FLC, to the most
efficient novel fuzzy mapping-based controllers. In this thesis, it was demonstrated
that the analytical representation of the fuzzy mapping facilitates the tuning of the
parameters in FLCs. Next, the controllers based on ANNs and DNNs with learning
capabilities were investigated. In this thesis, it was verified experimentally that the
proposed approaches can improve real-time control performance. Finally, a novel
deep fuzzy neural network framework which profoundly fuses DNN and FLC for

online training was proposed and validated under a variety of operating conditions.

xi



“A helicopter is a mechanical engineer’s dream and an aerodynamicist’s nightmare.”

—John Watkinson, British teacher

“If you are in trouble anywhere, an airplane can fly over and drop flowers, but a

helicopter can land and save your life.”

—Igor Sikorsky, Ukrainian American aviation pioneer

“Once you have tasted flight, you will forever walk the earth with your eyes turned

skyward, for there you have been, and there you will always long to return.”

—Leonardo da Vinci, Italian engineer, scientist and painter
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Chapter 1

Introduction

SINCE the beginning of time flying objects have exerted a great fascination on
mankind. The last decades have seen many exciting developments in the area of
unmanned aerial vehicles (UAVs) or drones. Moreover, UAVs are gaining increasing
interest due to a wide area of applications from military to civilian fields. An
attractive group of flying robots is composed of multicopter aircraft. A multicopter,
e.g., quadcopter or hexacopter, is a UAV which has vertical take-off and landing
characteristics. Due to its simple mechanical structure, it is capable of flying without
all those complex linkages appearing in typical helicopters. However, like a classical
helicopter, multicopters belong to a group of dynamical systems with non-linear
dynamics. Additionally, it is really hard to model all second-order effects. Thus,
a control system capable of dealing with non-linearity, unmodelled dynamics and
disturbances is needed [1]. Furthermore, integrating the sensors, actuators and

intelligence into a lightweight flying system is not trivial.

Designing nonlinear controllers for real-world systems to achieve high-accuracy
tracking is typically difficult, due to nonlinear relations combined with parameter
uncertainties, external disturbance, noisy measurements and other nonidealities in
the systems. However, designing and tuning conventional model-based controllers
to achieve satisfactory performance can be a time-consuming and difficult task, due
to non-linear dynamics, aerodynamic effects and various flight operating regimes.
In the presence of the aforementioned conditions, a model-free controller may be

preferred over model-based controllers.
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Fuzzy logic is a form of many-valued reasoning paradigm in which the truth values
of variables may assume any real number between 0 and 1 both inclusive [2].
Consequently, fuzzy logic systems (FLSs) are employed to handle the concept of
partial truth. Thereupon, fuzzy logic controllers (FLCs), which inherit FLSs, are
alternative solutions to the model-based controllers without the requirement for
a precise mathematical model of the system which is often either unavailable or
time-consuming to obtain. Moreover, FLCs can improve the robustness of the
control system in the presence of uncertainties and noise. Type-1 FLCs (T1-FLCs)
are the most widely used types of FLCs, due to their limited complexity from design

and computation perspectives [3].

Though T1-FLCs are widely used, type-1 fuzzy sets (FSs), described by type-1 mem-
bership functions (MFs), can effectively handle only bounded levels of uncertainty,
while real-world applications frequently have to deal with high levels and multiple
sources of uncertainty [4]. Therefore, there has been a growing interest in a more
advanced form of FLC, namely type-2 FLC (T2-FLC) [5]. Better handling of the
uncertainty using T2-FLCs is provided by an additional degree of freedom benefiting
from the footprint of uncertainty (FOU) in their FSs [6]. However, also an additional
complexity arises from the inclusion of FOU as well as the third dimension [7].
Therefore, the research has tended to focus on interval T2-FLCs (IT2-FLCs) [8],
rather than on general T2-FLCs [9], because the mathematical formulation of
general T2-FLCs is much more complex than that of IT2-FLCs [10]. The adoption
of IT2-FLC allows reducing the computational complexity which is an immense

benefit in real-time applications [11].

However, modern computers can perform the basic algebraic operations, e.g.,
additions, subtractions, multiplication and divisions, much more efficiently than
the operations of F'Ss, e.g., unions, intersections and implications, needed in fuzzy
logic [12]. Therefore, the availability of an analytical form of fuzzy mapping
(FM), which represents FLS, can open new doors to the use of FLCs in real-time
applications. Still, one weakness of FLCs is that their parameters have to be tuned

to deal with uncertainties.

By definition, artificial neural networks (ANNs) are computing models which
progressively improve their performance by learning from training examples [13].
Similarly to biological brains, ANNs are built by many simple processing elements,

called neurons, which are interconnected by links, called synapses [14]. Hence, ANN
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learns from the training samples by adjusting the synaptic weights of the connections
between neurons [15]. Moreover, ANNs reduce the need for feature engineering
which is one of the most time-consuming tasks in machine learning, for the training
data [16]. Therefore, ANNs are ideal for situations that require approximating a
function that depends on a huge number of inputs which nonlinearly connects to
the output [17]. Given the ability of ANNs to generalise knowledge from training

samples, ANN-based controllers are suitable to control nonlinear systems [18].

Though ANN can generalise knowledge from training samples, common single-
hidden-layer ANNs are able to approximate effectively only simple nonlinear func-
tions, while real-world systems are frequently highly nonlinear [19]. On the other
hand, deep neural networks (DNNs) which are distinguished from single-hidden-layer
ANNSs by their depth that is the number of layers through which data must pass in
a multi-step process [20]. Thus, DNNs can effectively be used to solve advanced
tasks similar to or even better than human experts [21]. Moreover, DNNs can
approximate non-linear functions with an exponentially lower number of training
parameters and higher sample complexity when compared to ANNs [22]. Therefore,
DNNs propose a novel approach to enhance the control strategies for nonlinear
systems [23]. After training the DNN module on collected flight samples, it can be

used in real-time to provide the control signal [24].

The fuzzy logic has an exceptional ability to handle the uncertainties in the sys-
tem [25]. However, one weakness of FLCs is that their parameters have to be tuned
to deal with uncertainties [26]. On the other hand, ANNs are a family of supervised
learning models that mimics human brain [17]. Yet, the main weakness of ANNs is
that their inner workings are difficult to interpret [27]. The combination of FLC
and ANN, called fuzzy neural network (FNN), fuses the reasoning ability of FL.C
to handle uncertain information with the training capability of ANN to learn from
the controlled process [28]. Consequently, FNN adopts the advantages of both FLC
and ANN [29].

It has been shown that DNNs are good at approximating knowledge but they do
not explain how they take their decisions [30]. On the other hand, FLSs are good at
explaining their decisions but they are not good at acquiring new information [26].
The limitations of these two techniques have been a driving force behind the creation
of hybrid systems where the combination of DNN and FLS, called deep fuzzy neural
network (DFNN), can overcome the drawbacks of each method [31].
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This thesis focuses on the aforementioned artificial intelligence-based control meth-
ods that enable UAVs to accurately track 3D trajectories. First, the investigation
considers the simplest static type-1 FLC, interval type-2 FLC, and the most efficient
FM-based controllers. Consequently, the controllers with learning capabilities are
studied based on ANNs and DNNs. Finally, the efficacy of combining fuzzy logic

and neural networks to adopt the advantages of both techniques is discussed.

1.1 Related Works

As being one of the fastest-growing sectors in the aerospace industry, UAVs can
provide an inexpensive solution to time-consuming, dull, dirty and dangerous
missions, such as emergency evacuation [32], traffic surveillance [33], aircraft detec-
tion [34], orchard monitoring [35] and environment mapping [36]. There are two
control paradigms for UAVs: model-based [37], which needs an exact model of the
system, and model-free [38], which does not need an exact model of the system.
The examples of the most widely used model-based controllers are proportional-
integral-derivative (PID) [39], dynamic feedback linearization [40], linear-quadratic

regulator [41], and model predictive control [42].

On the other hand, FLCs have been proposed as an alternative approach to
conventional model-based controllers when it is challenging to obtain the precise
mathematical model of the system [43-45]. This is due to several characteristics
of FLCs, inter-alia, improving the robustness and of the nonlinear control system
in the presence of uncertainties and external disturbances by using the expert
knowledge [25]. Therefore, FL.Cs have become one of the most popular model-free
approaches to control mobile robots [46, 47], especially UAVs [48], since their precise

mathematical model is challenging to obtain.

There are several types of control methods that use FLS as an essential component.
The majority of applications belong to the class of fuzzy PID controllers, where
FLS is placed within the feedback control loop and computes the PID control
signal through fuzzy inference [49]. In [50], more systematic analysis and design
for conventional double-input T1-FLC (DI-T1-FLC) are presented. In [51], a fuzzy
variable structure control is introduced for designing and tuning of DI-T1-FLC

based on variable structure control theory. The fuzzy PID controller derived in [52]



Chapter 1. Introduction 7

successfully demonstrated better performance than the conventional PID controller
for many cases, particularly for nonlinear plants. In [53], a function-based evaluation
approach is proposed for a systematic study of type-1 fuzzy PID controllers. In [54],
a general technique is developed for rigorously deriving analytical input-output
structure for fuzzy controllers that use Zadeh fuzzy AND-operator. In [55], an
analytical structure for fuzzy PID controllers has been derived using L-type and
G-type input FSs, trapezoidal output FSs, Mamdani minimum inference method,
algebraic product triangular norm, bounded sum triangular co-norm and center of

sums defuzzification method.

In the literature, singleton FLCs (SFLCs) are the most well-known and widely
used types of FLCs [56-58]. On the other hand, it is reported that non-singleton
FLCs (NSFLCs) give more promising results when compared to their singleton
counterparts for non-linear servo systems [59], active suspension systems [60], and
UAV control [61], where nonlinearities and uncertainties are more visible in the
system. Although both singleton and non-singleton T1-FLCs use the same fuzzy rule
base, inference engine and defuzzifier, there is a different fuzzifier in NS-T1-FLCs

which treats the inputs as F'Ss to deal with input uncertainties better [62—64].

Recently, many researchers have put significant attention toward more advanced
forms of fuzzy logic, such as T2-FLCs [65-67]. The transition from T1-FLCs to
T2-FLCs has been inspired by the observation that type-1 FSs can only deal with
a limited level of uncertainty whereas real-world control applications are often
confronted with high levels and multiple sources of uncertainty [68]. T2-FLCs can
be used to handle uncertainties better in the system, e.g., noisy measurements, due
to the additional degree of freedom provided by FOU in their FSs [69]. IT2-FLCs
have received more consideration [70-73], because the mathematics that is needed
for IT2-FLCs — primarily interval arithmetic — is much simpler than that of general
T2-FLCs [74]. The use of IT2-FLC helps to decrease the computation time which

is a big advantage in real-time on-board control applications [75].

Several studies have been presented to analyse the effect of the FOU on the type-2
FM [76]. In [77], the analytical structure of a special class of IT2 fuzzy proportional-
derivative (PD) and proportional-integral (PI) controllers that uses the Karnik-
Mendel (KM) iterative algorithm for the type-reduction has been presented. In [78],

the mathematical input-output structure of Mamdani I'T2 fuzzy PI controllers
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is derived for centroid and averaged defuzzifiers. Instead of using common type-
reduction methods, IT2-FLC analysed in [78] approximates the type-reduced set by
averaging embedded IT2-FLCs. In [3], some recent research results are summarized
on understanding the fundamental differences between T1-FLCs and IT2-FLCs. It
has been shown in [3] that IT2-FLC can implement complex control surfaces that
cannot be achieved by T1-FLC using the same rule-base. In [79], a technique is
developed which is capable of deriving the analytical structure for a wide class of IT2-
FLCs. In [80], an explicit solution is proposed to determine optimal switching points
of KM method for double-input IT2-FLCs (DI-IT2-FLC). In [81], the analytical
structural analysis of the simplest DI-IT2-FLC is presented. In [82], an approach
to derive the analytical structure of a class of double-input Takagi-Sugeno FLCs
is presented. Recently, in [83], the authors analysed the input-output relationship
of various I'T2-FLCs with trapezoidal FSs, and compared the difference in control
performance via analytical structure approach. Nevertheless, an exhaustive analysis
of FM for Mamdani DI-IT2-FLCs and real-time validation of the theoretical claims
are still missing in the literature [84]. The continuity of T1-FLCs and IT2-FLCs
have been introduced in [76]. Moreover, the study of other properties, such as

symmetry and monotonicity, of FM of double-input FLCs is missing in the literature.

In the literature, neural networks have successfully been integrated within control
systems to improve tracking performance [85]. In [86], the unknown part of the
dynamical model of a quadcopter is modelled by DNN. In [87], a robust direct inverse
control of a quadrotor is learnt by recurrent DNN in simulation. In [88] and [89],
DNNSs are used to learn the dynamics of helicopter and multicopter, respectively.
In [90], DNN pre-cascaded module is used to improve the performance a quadrotor
in tracking arbitrary hand-drawn trajectory. However, in all these works, DNNs

are trained offline and, then, used in real-time without further learning.

In the literature, there are attempts to integrate strengths of learning capability of
neural networks and reasoning ability provided by fuzzy logic, called fuzzy neural
network (FNN), for various applications, such as emission prediction [91], movie
classification [92] and robot control [93]. However, in all these approaches, the
sequential learning paradigms is implemented [94]. For example, in [91, 93], first,
the original inputs are fuzzified and, then, the fuzzy numbers are fed into the neural
network. Contrarily, the method in [92], first, transforms the original data by using

DNN and, then, the deep representation is fuzzified at the output layer.
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1.2 Contribution

The major and minor contributions achieved in this thesis are listed below.

Major contributions:

e Single input interval type-2 fuzzy PID controllers are derived and elaborated
in terms of their interpretability (video: tiny.cc/SI-IT2-FLC).

e A fuzzy mapping for double-input interval type-2 FLC has been explicitly
derived and analysed (video: tiny.cc/FM-FLC).

e A novel DFNN-based framework has been developed for learning online the

inverse dynamics of a system (video: tiny.cc/DFNN).

Minor contributions:

e The simulation setup has been implemented for quadcopter and coaxial

hexacopter UAV in ROS and Gazebo environment (video: tiny.cc/QLearning).

e Three different type-1 FLCs have been implemented for a quadcopter UAV
control problem (video: tiny.cc/T1-FLC).

e Type-1 FLC has been used with monocular visual-inertial SLAM in the
long-term navigation of quadrotor UAV (video: tiny.cc/SLAM-FLC).

e An ANN-based control method, which enables both fast flight and agile

manoeuvres, has been developed and tested (video: tiny.cc/fast ANN).

e An ANN-based controller has been applied for the fault-tolerant control for

actuator failure in coaxial hexacopter (video: tiny.cc/fault_ ANN).

e A DNN-based controller for transfer learning has been analytically derived
and tested on two different UAVs (video: tiny.cc/DNN).

e A novel LM theory-based algorithm for type-1 FNN has been presented to
control a quadcopter UAV (video: tiny.cc/LM-FNN).


http://tiny.cc/SI-IT2-FLC
http://tiny.cc/FM-FLC
http://tiny.cc/DFNN
http://tiny.cc/QLearning
http://tiny.cc/T1-FLC
http://tiny.cc/SLAM-FLC
http://tiny.cc/fast_ANN
http://tiny.cc/fault_ANN
http://tiny.cc/DNN
http://tiny.cc/LM-FNN
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1.3 Outline

The outline of this work is as follows. After this introductory chapter, in Chapter 2,
the research problem related to the control of nonlinear systems in general — and
UAV in particular — is defined. In Chapter 3, potentials of different singleton and
non-singleton T1-FLCs are explored in simulation and real-time experiments by
using monocular keyframe-based visual-inertial localization for position estimation.
In Chapter 4, capabilities of different IT2-FLCs with Gaussian and elliptic MF's are
investigated for changing speed trajectories. In Chapter 5, an alternative method
to derive and analyse FM for T1-FLCs and I'T2-FLCs is proposed and validated
in simulation and real-time experiments. In Chapter 6, potentials of ANNs-based
controllers are explored under fast and agile flights with a motor failure case for
a hexacopter UAV. In Chapter 7, DNN-based controller is proposed to solve a
transfer learning problem between similar robots and validated in simulation and
real-time experiments on two similar UAVs. In Chapter 8, potentials of FNN-based
controllers with sliding mode control (SMC) theory-based and Levenberg-Marquardt
(LM) theory-based training algorithms are investigated in the presence of periodic
wind gust in simulation and real-time experiments. In Chapter 9, capabilities of
a novel DFNN-based controller are explored under various operational conditions
in simulation and real-time experiments. Finally, some conclusions and possible
future works are drawn in Section 10. Besides, the derivations of the 3D rotation
matrix and of the rate transformation matrix are reported in Appendix A; while

the hat and vee mapping operators are defined in Appendix B.

A schematic overview of this thesis is depicted in Fig. 1.1 to show the relations

between different chapters and systems.
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Chapter 2

Problem Definition

THE term system, which comes from the Greek word ” systema”, defines a collection
of inter-related elements pursuing a particular objective [95]. Nearly all physical
systems are inherently nonlinear in nature since most of the real-world relationships
are nonlinear [96]. A nonlinear system is a system that does not satisfy the
superposition principle [97]. Nonlinear dynamical systems, describing changes in
system variables over time, may appear chaotic, counterintuitive and unpredictable,
contrasting with much simpler linear systems. The dynamical model of a UAV is
inherently nonlinear since the aerodynamic laws are highly nonlinear. Designing
nonlinear controllers for real-world systems to achieve high-accuracy tracking is
typically difficult, due to nonlinear relations combined with parameter uncertainties,

external disturbance, noisy measurements and other nonidealities in the systems.

In this chapter, the research problem related to the control of nonlinear systems in
general — and UAV in particular — is defined. First, Section 2.1 presents general
nonlinear discrete-time multi-input multi-output (MIMO) systems with internal
uncertainties, external disturbances and noisy measurements. Then, Section 2.2 de-

scribes dynamical models and control schemes for quadcopter and coaxial hexacopter

UAVs.

Supplementary Material:
Matlab model of a nonlinear system: github.com/andriyukr/nonlinear_system.
Gazebo and Matlab models of UAV: github.com/andriyukr/uav_model.
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2.1 Nonlinear Systems

First, consider a general nonlinear discrete-time MIMO dynamical system repre-

sented by its state-space model:

x(k+1) = f(x(k)) + g(x(k))u(k) (2.1)
h :

y (k) = h(x(k))

where k € N7 is the time step, x € R™s is the state of the system, u € R™ is the
input to the system, y € RY0 is the output from the system, and f : RVs — RNs,

g :RYs — RNs x RN and h : RYs — RMo are system functions.

Definition 2.1.1. Let r € Névo be the vector of relative degrees of the system,
which is the number of times one has to differentiate the output to have at least

one of the inputs explicitly appearing [98], i.e.:

arg max % e (/5 () + gu))] £0, i€ {L....No}.  (22)

Assumption 1. The system in (2.1) has well-defined relative degrees in (2.2) [99].
Assumption 2. The system in (2.1) is minimum-phase [100].

Assumption 3. The system in (2.1) is input-to-output stable [101], i.e.:

[y (B <~ (fam)[) V&, (2:3)

where 7 is a gain function. In other words, v is a scalar continuous function which

is nondecreasing and v(0) = 0.
The input and the output of the system are related by
yilk +15) = hi (f* 7 (f(x(K)) + g(x(k)u(k))), i€{l,....No}.  (24)
If y is affine in u, then (2.4) becomes
yilk +1:) = Fi(x(k)) + Gi(x(k))u(k), ie{l,...,No}, (2.5)

where

Fi(x(k)) = hi (f7(x(k))) : RYS — R (2.6)
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and

Gi(x(k)) = () [ (f7 71 (F(x(R)) + g(x(k))u(k)))] : RYS — RY0 x RY (2.7)
are decoupling functions. Finally, to track the desired output of the system y* € R0,

the control law at time k can be written as in [102]:
uwi(k) = [Gx(R)] ™ (v*(k +1:) = F(x(k)), i€{l....No}.  (28)

Assumption 4. The desired output of the system in (2.1) is available and bounded,
le.:

vk 3y"(k) eRY | ly* (k)| < ¢y, (2.9)

where ¢y« is some positive constant [103].

If a precise model of the system exists, the inversion of the system can be computed.
However, the system’s parameters might be unknown and difficult to estimate (e.g.,
moments of inertia). Besides, these parameters might change during the operation of
the system (e.g., mass). In addition, it is difficult to predict the external disturbance
term (e.g., wind gust). Furthermore, measurements from the system might come
from a noisy sensor (e.g., monocular camera). Therefore, the control law in (2.8)

cannot always be calculated precisely.

2.1.1 Internal Uncertainties

Consider a general nonlinear discrete-time MIMO dynamical system with internal

uncertainties:

x(k+1) = f(x(k) + g(x(k))u(k)
y (k) = h(x(k)),

where f: RNs — RNs| g: RNs — RNs x RM and h : RV — RN0 are new system

functions. To track the desired output of the system y*, the control law is

(2.10)

w(k) = (6] (v (k4 1) Fx(h)) (211)

where

Filoxa) = b (4 (x(k)) ) : RN — RN (2.12)
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Gi(x(k)) = ik) [ (77 (Foeth)) + gloe(iui)) )] Y - BN x Y

ou(
(2.13)
are new decoupling functions. Therefore, for an exact tracking of y*, the exact

values of new system functions f, § and h are required.

2.1.2 External Disturbance

Consider a general nonlinear discrete-time MIMO dynamical system with external

disturbances:

x(k+1) = f(x(k)) + g(x(k))u(k) + d(k) (2.14)
h(x(k)),

y (k) = h(x(k))

where d : R — R is the disturbance to the system. To track the desired output

of the system y*, the control law at time k is
(k) = [G(x(K)] " (y"(k +1;) = F(x(k) = D(k))), (2.15)
where D(k) = h; (f71(d(k))) € R0 is the disturbance decoupling matrix. There-

fore, for an exact tracking of y*, the exact value of disturbance d(k) is required.

2.1.3 Noisy Measurement

Consider a general nonlinear discrete-time MIMO dynamical system with noisy

measurements:

x(k+1)
y (k)

where A/ : R? — R0 is an additive noise, e.g., additive white Gaussian noise, at

F(x(k)) + g(x(k))u(k) (2.16)
h

(x(k)) + N (k),

time step k. To track the desired output of the system y*, the control law is
w(k) = [G(x(k)] ™" (v (k +1:) = N(k +1;) = F(x(k))). (2.17)

Therefore, for an exact tracking of y*, the exact model of noise N is required.
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2.2 Multicopter Unmanned Aerial Vehicles

Nowadays, the use of UAVs by amateurs with minimal piloting skills, skilled
hobbyists, and licensed pilots for purposes of aerial photography, drone racing, and
hobby, continues to grow [104]. There are two major types of users which lead to
the innovation and development of cutting-edge technology in this sector — military
and consumer industry. The former is mainly interested in long-range endurance
missions, and — thus, usually prefers fixed-wing UAVs, while the latter leans more
toward vertical take-off and landing capable multicopter UAVs. This modern-day
marvel is improving progressively and it is becoming accessible to most of the people.
Furthermore, besides leisure activities, these UAVs have also started to assume an
important role in a wide range of applications like — transportation [105], surveying

and mapping [106], and search and rescue [107].

2.2.1 Multicopter Unmanned Aerial Vehicle’s Dynamics

Let the world fixed inertial reference frame be Fyr = {Xw, ¥w, Zw } and the body
frame be Fp = {Xp,¥nB,Zp}. The origin of the body frame is located at the center
of mass (COM) of the UAV. Two UAV configurations with the corresponding
reference frames for X4 quadrotor and Y6 coaxial hexacopter UAV are illustrated
in Fig. 2.1.

The Ny, motors’ rotations generate Ny forces fi, i € {1,..., Ny}, directed along

the axis of rotation Zg and with module proportional to the speed of rotation, and

(a) X4 quadrotor UAV. (b) Y6 coaxial hexacopter UAV.

Figure 2.1: UAVs configurations with their references frames.
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Ny torques 74, @ € {1,..., Ny}, around the axis of rotation Zg and with module

proportional to the speed of rotation [108]:

fi = bw? .
. ie{l,..., Ny}, (2.18)
T; = dwf

where b is the propeller thrust coefficient, d is the propeller drag coefficient and w;

is the rotational speed of the i*" propeller.

The UAV electric motors are velocity controlled, so the vector of control inputs u

may bu considered directly as
T
u = |:T Td) To Twi| s (219)
where T is the total thrust and acts along Zp axis, whereas 7,, 7p and 7, are the
moments acting around Xp, yp and Zp axes, respectively.

T
The absolute position of the UAV p = [m Yy z] is described by three Cartesian

T
coordinates of its COM in Fy,. While the attitude of the UAV 0 = [gb 0 w} is
described by three Euler’s angles. These three angles are respectively called roll ¢,

pitch 6 and yaw .

The time derivative of the position (z, y, z) gives the linear velocity
T T
v = [x v z} = [vz Uy vz} , (2.20)

of the UAV’s COM expressed in Fy. Let vg € R? be the absolute velocity of the
UAV expressed in Fg. So, v and vp are related by

v = Rvp, (2.21)

where R € SO(3) is the rotation matrix from Fp to Fy and is computed in

Appendix A:

coscosf cossingsinh — cospsiny  sin ¢ sin ) + cos ¢ cos 1 sin f
R = |cosfsiny cos¢pcost) +singsinysin€ cos@sin sinf — cos ) sin ¢
—sinf cos @ sin ¢ cos ¢ cos 6
(2.22)
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Similarly, the time derivative of the attitude (¢, 8,1) gives the angular velocity

expressed in Fyy: .
w= [g'b 0 ¢] : (2.23)

and the angular velocity expressed in Fp is
T
wp = [a}¢ W W¢] . (224)
The relation between w and wpg is given by
w = Twp, (2.25)
in which T is the transformation matrix and is computed in Appendix A.1:

1 sin¢gtanf cos¢tan6
T=10 cos ¢ —sing |, (2.26)

0 singsect cos¢psect

which depends only on the UAV’s attitude.

Correspondingly, let a € R? be the absolute acceleration of the UAV expressed in
Fw and ag € R3 be the absolute acceleration of the UAV expressed in Fg. So, the

relation between a and ag is computed by the analytical derivative of (2.21):

a=Rvp+ Rag. (2.27)

Using the Newton-Euler equations about UAV’s COM, the dynamical model of the
UAYV body is the following [109]:

mv =f
v (2.28)
I(.;)B :—waIwB+TE,

where m is the UAV mass, I is the inertia matrix, and fg is the vector of external
forces and T is the vector of external torques. The products of inertia can be

considered to be 0 due to the symmetries of the system, and I becomes a diagonal
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matrix given by

I, 0 0
I=10 I, 0 (2.29)
0 0 1,
Some calculations yield the following form for fg and 75:
/ —
(cos ¢psin b cos ) + sin psin ) T
fr = |(cospsinfsint —sinpcos)) T
cospcost)T —m
| (cosgcost) g (2.30)
T¢
TE = |To| >
Tep

\ L

in which g is the gravitational acceleration constant (g = 9.81m/s?). Finally, using
dynamic and kinematic differential equations (2.21), (2.25), (2.28) and (2.30), the

following system of non-linear differential equations is obtained:

T = Uy
Y = Uy
2=,

¢ = wy + (sin ¢ tan @) wy + (cos ¢ tan 0) wy,

0 = (cos ¢) wy — (sin d) wy

w cos 60 cos 6 XY (231)
Uy = = (cos ¢ cosYsinf + sin g sin ) T

by = = (cos ¢siny sin @ — cospsin ¢) T

b, =+ (cospcosf) T — g

- Iy—1, 1
Wy = ~ 1 Wewy + 7. To
. I.—1I 1
Wy = ZEWewy + 7 Th

Io

. o —Iy 1
wd, =TI w¢wg + ET¢.

\

which can be described in state space form in (2.1) with

X=|2 y z ¢ 0 Y v, vy vV, Wy Wg Wy | (2.32)
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and

3= 3=

0
0
0
0
0

0

Iy

/UCU
Uy

Uy

COS pwy — Sin Py,

sin ¢ cos ¢
cos 0 Wy + w.

cos 0

0
0

-9

Y z
I, wWoWy
L—1I,

WeWy

z— 1y
I, WoWo

(cos ¢ cos 1 sin 0 + sin ¢ sin )
(cos ¢ sin ) sin @ — cos 1 sin ¢)

L cos¢cosh
m

Wy + sin ¢ tan Owy + cos ¢ tan Owy,

O Ofr o O 0O 0 0o o o o O

O O O O 0O 0 o o o o o

o O O O O O O o o o o

o

(2.33)

(2.34)

(2.35)

(2.36)

Remark 2.1. If the attitude controller as in [110] is included in the dynamical

model, then the virtual control inputs are.

u:[vz o 0 ww]T.

(2.37)
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2.2.1.1 X4 Quadcopter

A quadcopter, or quadrotor, shown in Fig. 2.1a, is an aerial vehicle actuated by
modulating the speed commands of each of the four motors (N, = 4). It consists
of four identical rotors and propellers located at the extremities of an X-shaped
frame. In a quadcopter, the two axes Xp and yp lie in the plane defined by the
centres of the four rotors and point between rotor 1 and rotor 2 and between rotor 1
and rotor 4, respectively, as illustrated in Fig. 2.1a. The axis Zp points upward as

the direction of the total thrust, defining the body-up configuration.

In a quadcopter, all the movements are the consequence of the propellers’ speed (as
shown in Fig. 2.2): two propellers rotate in a clockwise direction (the second and
the fourth propellers), while the other two rotate in a counter-clockwise direction
(the first and the third propellers). Changing simultaneously the throttle of all
motors, while the vehicle is horizontal, produces vertical motion (Fig. 2.2a). A
difference of speed between the blades on the same axis carries a rotation of the
aircraft about the other axis. Roll moment is produced by adjusting the thrust of
the left motor with respect to the right one (Fig. 2.2b). Pitch moment is produced
similarly by increasing the thrust of the front motor while decreasing that of the
rear motor or vice versa (Fig. 2.2c¢). Yaw moment is slightly more subtle: if the
front and rear motors (which spin clockwise) spin faster than the left and right
motors (which spin counter-clockwise), yawing results due to the difference in rotor
drag moments on the respective motors (Fig. 2.2d). Therefore, the quadcopter is a
highly non-linear dynamical system with four control inputs (angular speed of four
rotors) and six degrees of freedom (position and orientation in space), resulting in

a MIMO under-actuated system.

The relation between u in (2.19) and w;, ¢ € {1,...,4}, is algebraic [111]:

(T =fi+h+fthi
7o =lsing (fi—fo— f3+ fa)
To =lcosi(—fi—fot+ fo+ fa)

\Tw :—T1+7'2—7'3+7'4,

(2.38)
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(a) Motion along vertical axis. (b) Roll motion.

(¢) Pitch motion. (d) Yaw motion.

Figure 2.2: The quadcopter concept. The length of the arrows is proportional to
the corresponding forces and torques.

where [ is the arm length. Applying (2.18) to (2.38):

T =b(wi+wi+wi+uwi)
Ty = L2pl (w2 — Wi — Wi+l
) ¢ 2 (wi 2 3 1) (2.39)
1o = bl (—wi — wi + wi + wj)
7y = d(—wi+wi —wi+wi),
and writing it in matrix form:
] [ b b b b ] [w?]
To| | GO =P bl 20l |wd | (2.40)
T — 2y 2 2p 2| |2
v | —d d —d d | |wi]
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The relation in 2.40 is always invertible, when [ # 0, b # 0 and d # 0:

w? dl v2d —v2d —bl| [T
wi| 1 |dl —v2d —V2d bl | |7
w2 A4bdl |l —v2d  V2d bl |7
w? dl v2d  V2d bl | |7y

(2.41)

Therefore, the control inputs can be brought back to the speed of the motors.

Remark 2.2. For the dynamical simulations, the model of the quadcopter is
implemented in the robot operating system (ROS) and Gazebo simulator. The
UAV’s position is measured by a simulated global positioning system (GPS); while
the UAV’s attitude and angular velocities are provided by a simulated inertial

measurement unit (IMU).

2.2.1.2 Y6 Coaxial Hexacopter

A Y6 coaxial hexacopter, shown in Fig. 2.1b, is an aerial vehicle actuated by
modulating the speed commands of each of the six motors (Ny; = 6). It consists of
six identical rotors and propellers located at the extremities of a Y-shaped frame
with two motors per arm (top and bottom). In a coaxial hexacopter, the two axes
Xp and yg lie in the plane defined by the centres of the six rotors, as illustrated in
Fig. 2.1b. The axis zZp points upward as the direction of the total thrust, defining
the body-up configuration.

In a coaxial hexacopter, as well as in a quadcopter, all the movements are the
consequence of the propellers’ speed (as shown in Fig. 2.3). The top three propellers
rotate in a clockwise direction, while the bottom three rotate in a counter-clockwise
direction. Changing simultaneously the throttle of all motors, while the vehicle is
horizontal, produces vertical motion (Fig. 2.3a). A difference of speed between the
blades on the same axis carries a rotation of the aircraft about the other axis. Roll
moment is produced by adjusting the thrust of the left motor with respect to the
right one (Fig. 2.3b). Similarly, pitch moment is produced by increasing the thrust
of the front motor while decreasing that of the rear motor or vice versa (Fig. 2.3c).
Yaw moment is slightly more subtle: if the top motors (which spin clockwise) spin
faster than the bottom motors (which spin counter-clockwise), yawing results due

to the difference in rotor drag moments on the respective motors (Fig. 2.3d).
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(¢) Pitch motion. (d) Yaw motion.

Figure 2.3: The coaxial hexacopter concept. The length of the arrows is propor-
tional to the corresponding forces and torques.

The relation between u in (2.19) and w;, i € {1,...,6}, is algebraic:

¢
T
To

To

(T

=fit+tfotfat+fatfo+fe
=1 (sinZ(fs + fa) —sin 5 (f5 + fs))
=1(=(fi+ f2) + cosZ(fs+ fa+ fs + fo))

:—71+T2—7'3+T4—T5+T6.

(2.42)
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Applying (2.18) to (2.42):

(

T =b(wi+ws+wi+wi+wi+wp)
T 73bl (W2 4+ w? — w2 — W) (2.43)
To = 3bl (—2w? — 2w} + w3 + Wi + w? + w3)
7y = d(—wi 4 Wi —wi +wi —wi+wp),
and writing it in matrix form:
wi
T b b b b b b w?
| |00 ol B bl Lol |w? (2.44)
To —bl —bl bl Lot i Ll | |3 ‘
Ty —d d —-d d —d d w?
Wy

The relation in (2.44) is always invertible, when [ # 0, b # 0 and d # 0. The inverse

of (2.44) is o ) _
w? a0  —2d —bl
w3 a0 —2d b ||T
wil 1 |dl V3d  d o =Wl |7 (2.45)
w2 6bdl {al \3d  d bl | |7 '
w? dl —V3d d -bl| |7y
w? dl —/3d d bl

Therefore, the control inputs can be brought back to the speed of the individual

motors.

Remark 2.3. For the dynamical simulations, the model of the coaxial hexacopter
is implemented in ROS and Gazebo simulator. The UAV’s position is measured by
a simulated GPS; while the UAV’s attitude and angular velocities are provided by
a simulated IMU.
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2.2.2 Control Scheme

The overall structure of the closed-loop control scheme for the UAV’s dynamical
system (2.31) is illustrated in Fig. 2.4. It consists of five main blocks: high-level
position controller, mid-level velocity and attitude controllers, low-level motor speed
controller, and UAV itself.

2.2.2.1 Position Control

The position controller in Fig. 2.4 consists of three identical and independent sub-
T
controllers for z, y and z axes, as shown in Fig. 2.5. If p* = [x* y* z*] is the

desired position of the UAV, then the position error is

e = e e, ezr —p —p. (2.46)

T

The position controller computes the desired linear velocity v* = [v; vy vj} ,
in order to reach the desired position p* from the current position p. Each sub-
controller takes the corresponding position error, as the input, and returns the
corresponding control signal, as the output. For the z-axis controller, the input is
e, and the output is v}. For the y-axis controller, the input is e, and the output is

v,. For the z-axis controller, the input is e, and the output is v;.

T
P Position | v* | Velocity . : - Motors
controller controller R Attitude ¢, controller
controller
Q
UAV p

dynamics

I(.JB R Vv

Figure 2.4: Block diagram of the control system for a multicopter UAV.
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Z-axis Uz
controller

* *

p y-axis Uy v*

controller

*

2-axis v,
controller

Figure 2.5: Block diagram of the position controller for a multicopter UAV.
2.2.2.2 Velocity Control

For the velocity tracking, the nonlinear geometric controller on the special Euclidean
group SE(3) is used [32]. If v* is the vector of desired linear velocities provided by

the velocity controller, the velocity error is given by
ey =Vv—Vv". (2.47)
To fly always forward, UAV has to point towards the direction of the movement.
Therefore, the desired direction of the first body axis is
1

* *
vy vy, OH

ok
Xp =

[v;; v o} " (2.48)

Now, the desired direction of the second and third body axes can be computed:

Z* _ —kyey—mges
B T =k _
Hq* ve:; mgesl| (2.49)
s o ZBXXB
YB T TEpxg

T
where k, is some positive constant and e; = [O 0 1] . It can be also assumed

that X3 } Z};. The rotation matrix for the desired attitude (X3, ¥5,Z}5;) is given by
R' = |y x 2y ¥j 2y €SO(3). (2.50)

Finally, the first control input in (2.19) — thrust — is chosen as follows:
T = (kyey + mgeg)T Res, (2.51)

where £k, is some positive constant gain.
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2.2.2.3 Attitude Control

For the attitude tracking, the nonlinear geometric controller on the special Euclidean
group SE(3) is used [112]. If R* is the desired rotation matrix provided by the

velocity controller, the attitude error is given by
1 *T TV
eRzﬁ[R R-R'RY] (2.52)

where [-]” is the vee map: SO(3) — R?, defined in (B.3). Then, the error for the

angular velocity is given by
e, =wp — R'R*wj, (2.53)

where [w%]" = R*TR*, []" is the hat map: R* — SO(3), defined in (B.1), and
the derivative of the rotation matrix R is defined in (??). Finally, the remaining

control inputs in (2.19) are chosen as follows:
T = —k:ReR — kwew +wp X I(.UB, (254)

T
where 7 = [% To Tw] is desired torque, kg and k., are some positive constants.

2.2.2.4 Motors Speed Control

The motor speed controller is a static controller and it maps control inputs in (2.19)
computed with (2.51) and (2.54) to the desired motor speed Q. In case of the
T

quadcopter, £ = [wl Wy W3 w4] and is computed with (2.41). In case of the

T
coaxial hexacopter, 2 = [wl Wy ws ws ws wg| andis computed with (2.45).

2.2.2.5 Real-World Control Scheme

The architecture of the real-time implementation of the control scheme is shown in
Fig. 2.6. The trajectory generator provides high-level navigation commands which
are interpreted by the position controller as the desired position. Once the desired
thrust and attitude are computed, they are sent to the onboard velocity-attitude
controller which converts them to the control inputs. Different sensors are used to

estimate the actual position of the UAV to feed it back to the position controller.
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Figure 2.6: Architecture of the real-world implementation of the control scheme for UAV.
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Chapter 3

Type-1 Fuzzy Logic-Based Control

FUZZY logic is a form of many-valued reasoning paradigm in which the truth
values of variables may assume any real number between 0 and 1 [2]. Fuzzy logic
is employed to deal with the concept of partial truth by using expert knowledge
throughout its design. Thereupon, FLCs are alternative solutions to the model-
based controllers without the requirement for the precise mathematical model of the
system which is often either unavailable or highly time-consuming to obtain. Hence,
FLCs have been extensively used for the control of nonlinear systems, like in (2.1),
due to their capability of delivering excellent control in the presence of uncertainties
and noise. Generally, T1-FLCs are the most widely used types of FLCs, due to

their limited complexity from design and computation perspectives [3].

In this chapter, potentials of different T1-FLCs are explored under various opera-
tional conditions. First, Sections 3.1 revises the definition of T1-FLCs. Sections 3.2
and 3.3 present traditional singleton and enhanced non-singleton T1-FLCs, respec-
tively. Then, Sections 3.4 and 3.5 show simulation and experimental results on

quadrotor UAV, respectively. Finally, some conclusions are drawn in Section 3.6.

Supplementary Material:

ROS package for the proposed T1-FLCs: github.com/andriyukr/controllers.
Video for the simulation results: tiny.cc/T1-FLC.

Video for the experimental results: tiny.cc/SLAM-FLC.
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3.1 Mathematical Preliminaries

Commonly, T1-FLS consists of four elements: fuzzifier, rule-base, inference engine
and defuzzifier. All these blocks are interconnected, and Fig. 3.1 shows the general
structure of T1-FLS. Generally, T1-FLS can be seen as a mapping from crisp input

T
o = [01 O'NI} , where Ny is the number of crisp inputs, to crisp output

T
Pt = [gplTl e @%10} , where N is the number of crisp outputs. Initially, the

fuzzifier transforms crisp inputs o into fuzzy input sets X

Definition 3.1.1. If ¢ is a crisp input to T1-FLS, a type-1 fuzzy set (FS) A is
described by a type-1 membership function (MF) pa(o) € [0,1], i.e.:

A ={(0,p4(0)) | pa(o) € [0,1] Vo € R}. (3.1)
T
In other words, FSs are associated with the fuzzy inputs L' = [Z;ﬂ e E%
T
and fuzzy outputs @' = [Q)lTl @%10] : while MFs p are used to describe

these FSs. An example of three Gaussian type-1 FSs are illustrated in Fig. 3.2.

Remark 3.1. If MFs in (3.1) assume only 0 or 1, i.e., u(o) € {0, 1}; then, type-1

F'Ss degenerate into singleton FSs.

Three singleton FSs are illustrated in Fig. 3.3. Based on how the inputs are handled

in the fuzzifier, two types of fuzzification exist: singleton and non-singleton.

Definition 3.1.2. If the input to FLS is type-0, i.e., crisp input, then FLS is called
singleton FLS (SFLS).

Definition 3.1.3. If the input to FLS is type-1 FS, then FLS is called non-singleton
FLS (NSFLS).

Rule-base
R
o »T pT! e
—>| Fuzzifier Inference Defuzzifier f—

Figure 3.1: Structure of the type-1 fuzzy logic system.
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1 0 1 %

Figure 3.2: "Negative” (N), "zero” (Z) and ”positive” (P) FSs represented by
three Gaussian type-1 MFs.

0 \ >
-1 —0.5 0 0.5 1 %

Figure 3.3: ”Big negative” (BN), ”small negative” (SN), "zero” (Z), ”small positive”
(SP) and ”big positive” (BP) FSs represented by five singleton MF's.

The rule-base R is the core of any FLS. Every single rule R; € R can be expressed
as an [F — THEN statement. The IF-part is the antecedent, while the THEN-part

is the consequent.

Definition 3.1.4. If Ny is the number of rules in a rule-base R, then the i*" rule

R; € R,i€{l,...,Ng}, is indicated as I[F — THEN statement, i.e.:

IF 0y is Ay; and ... and oy, is An, 4,

i , 1€{1,...,Ng}, (3.2)
THEN ¢; is Cy; and ... and ¢y, is Cn,,i

where A;;, 7 € {1,..., N}, represents antecedent F'S; while Cy;, h € {1,..., No},

represents consequent F'S.
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A typical 9 and 27 rules rule-bases are shown in Table 3.1 [113] and Table 3.2 [114],

respectively.

Remark 3.2. It has to be emphasised that Af, je{l,....N; ke {l,...,Np},
represents the k™ antecedent FS of the j™ input; while, A;;, j € {1,...,N;},i €
{1,..., Ng}, represents the antecedent FS of the j*® input in the i*® rule. The same
convention is used for the consequent FSs, C’j’?, je{l,....,Ni},ke{l,...,Np},
represents the k™ consequent FS of the j™ output; while, Cj,;, h € {1,...,No},i €
{1,..., Ng}, represents the consequent FS of the h*" output in the i® rule.

Once crisp inputs are fuzzified, FSs activate the inference engine. The inference

engine implies type-1 fuzzy output sets ®' from type-1 fuzzy input sets X'

Definition 3.1.5. The firing strength f;(o) € [0,1], 4 € {1,..., Ng}, of the i*" rule

can be computed with the product t-norm, i.e.:
Ny
file) =] pa,.(0), i€{1,...,Ng}. (3.3)
j=1

Table 3.1: A typical 9 rules rule-base of FLC.

T z

| | v [ z | °
N RliBN RQIBN R3:Z
Z R4ZBN R5IZ RﬁiBP
P R;:Z | Rg:BP | Ry :BP

Table 3.2: A typical 27 rules rule-base of FLC.

T T 2
| I v [ 2z | P
N R; :BN | Ry :BN | R3:SN
N Z Ry:BN | Rs:SN | Rg:2Z
| | P R::SN | Rs:Z | Ry:SP
N Ry :BN | Ryy :SN| Ryp: Z
Z Z Ri3:SN| Riyu:2 Ri5 : SP
B Rig:Z | Ri7:SP | Rig:BP
N Rig:SN | Ryg:Z | Roy :SP
P Z Ry 1 Z Ro3 : SP | Ros : BP
P Ros : SP | Rog : BP | Ro7 : BP
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Remark 3.3. From Definitions 3.1.1 and 3.1.5, it can be seen that f; € [0, 1],
ie{l,...,Ng}.

In other words, the inference engine manages which rules are fired. Finally, the

output of FLCs must be crisp numbers. This is accomplished by the defuzzification.

Definition 3.1.6. The h'" defuzzified output, h € {1,..., No}, can be computed

with the centroid defuzzification, i.e.:

T (o) = 2 Jil@)Chi {1,...,No}. (3.4)

Zf\iﬂi fi(o) 7

Remark 3.4. By substituting (3.3) into (3.4), the h'® defuzzified output, h €

{1,...,No}, can be computed as follows:

B Zfipi <H;V=11 “Aj,i(aj)) Chi
Zi\;Rl <H§V:11 IMA”(O-])>

. hefl,... Nob (3.5)

The structure of a triple-input type-1 fuzzy PID controller, which inherits triple-
input T1-FLS, is shown in Fig. 3.4. The input scaling factors k,, k; and k; are
chosen to normalize e, [e and é to the universe of discourse of the antecedent
MFs, ie., [-1,1]. So, e, fe and é are transformed into oy, o9 and o3, respectively,
before inputting them to triple-input T1-FLS. Consequently, the output ¢! from
triple-input T1-FLS is transformed into the control signal v by an unscaling gain
k, such that the output is denormalized to the domain of the control signal. In the

adopted control structure, only one parameter has to be tuned, i.e., k,.

o
ky f—
e ki | 02 Triple-Input ptt 1 U
' T1-FLS ?
g3
kol

Figure 3.4: Structure of a triple-input type-1 fuzzy PID controller.
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3.2 Singleton Fuzzy Logic Control

The input to SFLS is a singleton or crisp input:

17 05 =¢Cj

0, O'j?écj‘,

Hol0y) = (3.6)

where ¢; is the center of j* input MF. Namely, in SFLS, the fuzzifier maps a crisp

input o; into a fuzzy set X; with support c¢;, as shown in Fig. 3.5a.

Remark 3.5. The fuzzifier of the SFLS does not model any vagueness for the

input. Therefore, it does not make full use of the modelling capability.

3.3 Non-Singleton Fuzzy Logic Control

On the other hand, NSFLC is T1-FLS whose inputs are modelled as type-1 FSs by
prefiltering unit, as shown in Fig. 3.6. Namely, NSFLS can be used to cope better
with noisy, imprecise or inaccurate input measurements. In NSFLS, the prefilter

maps a crisp input o; into MF p,, e.g., Gaussian MF, as shown in Fig. 3.5b:
(07— &)
1 (03) = exp {—T | (3.7)

where d; is the standard deviation of the j™ FS.

2 Ko

0 Cj Tj 0

(a) Singleton prefiltering. (b) Non-singleton Gaussian prefiltering.

Figure 3.5: Singleton and non-singleton prefiltering.
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o Ho . Y
—>| Prefilter Fuzzifier F—

Figure 3.6: Fuzzification in NSFLS.

Remark 3.6. The non-singleton fuzzifier implies that the given input value ¢; is
the most likely value to be correct one. Moreover, larger values of the spread d;

represent that more uncertainties, e.g., noise, are inherent within the input data.

In the literature, NSFLSs are categorised into three types, based on the type of the
prefilter:

i) NSFLC with standard prefilter [115], i.e., Sta-NSFLS;
ii) NSFLC with centroid-based prefilter [62], i.e., Cen-NSFLS;

iii) NSFLC with similarity-based prefilter [63], i.e., Sim-NSFLS.

Fig. 3.7 shows the differences among various prefilters.

3.3.1 Standard Non-Singleton Fuzzy Logic Control

In Sta-NSFLS, for calculating the input FS, the maximum of the intersection

between prefiltered input and antecedent MF is utilised:

psta(0) = supmin (115 (), p1a(0)) - (3:8)

Hy fia o

Hsta A
/‘LCETL

Hsim -

0
0

Figure 3.7: Examples of NSFLS prefiltering with standard, centroid-based and
similarity-based prefilters.
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3.3.2 Centroid Non-Singleton Fuzzy Logic Control

In Fig. 3.8, two different prefiltered inputs are shown which are intersected with
an antecedent MF. Although the actual prefiltered inputs are different, the input
FSs calculated by the standard approach are the same in both cases. Thus, two
different inputs, or more specifically inputs with a different associated uncertainty
distribution, result in the same input F'S and, thus, the same output from FLS. Hence,
a method with a more detailed capture of input uncertainty and its intersection with
the respective antecedent F'S is desirable, i.e., a new method should have a higher
sensitivity to the shape of the intersection. Fig. 3.8 shows how in Sta-NSFLSs the
maximum of the intersection between different prefiltered inputs and antecedent
MF result in the same o4, and, thus, the same input FS. However, in Cen-NSFLS,
O1,cen and 09 ooy, are different when the centroid of each intersection has been applied
instead of their maximum. In Cen-NSFLS, for calculating the input F'S, the centroid
of the intersection between the fuzzified input and antecedent F'S is used rather

than the maximum of the intersection utilized in Sta-NSFLSs:

_ Jope(o)do

Ocen = W. (39)

2 HA Moy Moy

,usta

N2,cen 1i---———7"""----------
Hicen |---------------F1-f+-

0

I
>

0 O02.cen Osta Ol,cen g

Figure 3.8: Difference of NSFLS prefiltering with standard and centroid-based
prefilters.
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3.3.3 Similarity Non-Singleton Fuzzy Logic Control

In Fig. 3.9, intersections of two different prefiltered inputs with an antecedent
F'S are shown. Although, these two fuzzified inputs have two different associated
uncertainty distributions, the standard and centroid-based fuzzification for both o
and oy are the same, i.e, fio, (01 cen) = Moy (T2.cen) = Loy (O1,5ta) = Moy (02,5ta). Hence,
a new NSFLS, which is more sensitive to the input uncertainty, is desirable. In
[63], a novel NSFLS with the similarity-based inference engine, i.e., Sim-NSFLS,
was presented and used for the well-known problem of Mackey-Glass time series
predictions. The results showed that Sim-NSFLS outperformed Sta-NSFLS and
Cen-NSFLS under different noise conditions. As shown in Fig. 3.9, y,, ,, and
Hos i are two different MFs for two different inputs based on the similarity-based
approach. Considering the prefiltered input o and antecedent FS A with MFs p, (o)
and p4(0), respectively, the similarity between o and A is defined based on the

Jaccard similarity: [ min(o(o) )
B min{ us(o ), ha\o g
o = T max(ip(0), pra(0))do”

(3.10)

lho
1T f-mmmmm N

Hisim p--------------—---f-f4----+\

S ———

Koy

Hey

|
|
|
|
|
|
l
|
H2sim {------------f-—~f------ Fo—- -\ -
|
|
|
|
|
|
|
|
|

0 O1,sta = 02,sta = O1,cen = 02,cen

Figure 3.9: Difference of NSFLS prefiltering with standard, centroid-based and
similarity-based prefilters.
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3.4 Simulation Results

The 3D trajectory is defined according to the minimum snap property [116] which
enables the real-time generation of an optimal trajectory through a sequence of 3D
positions, thereby ensuring safe passage through specified environments as well as
maintaining the constraints on accelerations and velocities. Some manoeuvrable
flights were generated, e.g., descending and climbing straight lines as well as curves,
the sharp turns between the straight lines and curves, to test the control performance
of each NSFLC controller. It is noted that the generated 3D trajectory is sent to
all NSFLCs at the same time.

Different Gaussian distributions are employed in (3.7) for the input and output
MFs of FLC. Each input variable, i.e., position error e, in (2.46), its derivative €,
and its integral [ ep, has three MFs, depicted in Fig. 3.2; while the output variable,
i.e., control signal u, has five MFs, depicted in Fig. 3.3. The rule-base of FLC is

defined based on the expert experience, and the rules are summarized in Table 3.2.

3.4.1 Sources of Uncertainties

T
In order to produce the noisy measurements p = [97: v Z} , the white Gaussian

noise is added to the true position:

T =N(z,0%)
y=N(y,o%) (3.11)
z2=N(z0%),

where oy is the standard deviation of the position noise and N'(u, o) is the Gaussian

distribution with mean p and variance o?.
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3.4.2 Discussion

The control performance evaluation is carried out in terms of the mean squared
error (MSE) of the 3D position:

L
MSE = — il 3.12
ND;HP pil| (3.12)

T T
where Np is the number of data samples, p; = [;z:;‘ yr z;‘} and p; = [:cl Yi zl}

are the desired and actual positions for the i-th sample, respectively.

To test and evaluate the quadrotor UAV control performances, six levels of noise
(o = {0.0,0.2,0.4,0.6,0.8,1.0}) and three NSFLCs (Sta-NSFLC, Cen-NSFLC
and Sim-NSFLS) with five input fuzzifications (o = {0.2,0.4,0.6,0.8,1.0}), i.e.,
different standard deviations for input MFs, are provided. Fig. 3.10 shows the
example of three UAV flights with the same level of fuzzifier (o = 1.0) under three
different levels of noise (o = 0.0, oy = 0.5 and oy = 1.0). As can be seen from
Fig. 3.11, Cen-NSFLCs outperform Sta-NSFLCs, and the control performances of
Sim-NSFLCs are better than both Cen-NSFLCs and Sta-NSFLCs. In addition, the
larger values of the o for the fuzzifier can assist the NSFLCS to achieve better

performances. Fig. 3.11 also clearly shows the control performance differences

among Sta-NSFLC, Cen-NSFLC and Sim-NSFLC.

---Ref. trajectory Ref. trai ---Ref. traject
~=-Ref. trajectory ef. trajectory
s Sta-NSFLC 3 Sta-NSFLG 3. |—StaNSFLC
—C_en-NSFLC — | —GCen-NSFLC ——Cen-NSFLC
—Sim-NSFLC —Sim-NSFLC —Sim-NSFLC

X [m] x [m] x [m]

(a) O’NZO.O (b) O'N:O.5 (C) O'N:]..O

Figure 3.10: Trajectory tracking under three different levels of noise (on = 0.0,
oy = 0.5 and o = 1.0) with the same level of fuzzifier (o = 1.0).
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lSta-NSFLC, o = 0.2
0.6 | |l Cen-NSFLC, o = 0.2
ISim-NSFLC, of = 0.2
— [Sta-NSFLC, o = 1.0
2. 0.4 []Cen-NSFLC, o = 1.0
[ JSim-NSFLC, of = 1.0

0 I
00 02 04 06 08 10
Noise Level, oy [m]

Figure 3.11: Control performances of Sta-NSFLC, Cen-NSFLC and Sim-NSFLC.

3.5 Experimental Results

Real-world quadrotor UAV flight experiments are conducted and evaluated in the
OptiTrack motion capture system laboratory at Nanyang Technological University,
Singapore. The OptiTrack system can provide real-time rigid body position mea-
surement, i.e., ground truth, in a three-dimensional space with an update rate of
240Hz and accuracy of 0.1mm. All the controllers, i.e., conventional PID, SFLC,
Tra-NSFLC, and Cen-NSFLC, are developed in C++ and integrated into ROS.
To evaluate different levels of input uncertainty affecting the control inputs of the
quadrotor UAV, four different types of flight experiments with different flight speeds

are carried out:
e Test 1: hovering at fixed position ([O 0 1] m);
e Test 2: following an eight-shaped trajectory at 1.0m/s;
e Test 3: following an eight-shaped trajectory at 1.5m/s;

e Test 4: following an eight-shaped trajectory at 2.0m/s.
Remark 3.7. In Test 1, the UAV flight speed can be considered as Om/s.
To evaluate the robustness of each controller, the trajectory is generated using

the minimum snap property and several flight manoeuvres, such as ascending

and descending straight lines as well as curves. To evaluate the performances, all
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controllers were designed and iteratively tuned, with an emphasis on investing equal
amounts of design effort for each controller. The flight data collected from one

hundred experiments are analysed.

Remark 3.8. For the localisation of UAV, the monocular keyframe-based visual-
inertial SLAM algorithm is used. The monocular visual-inertial SLAM produces

noisy odometry because of the motion blure at higher flight speeds [117].

3.5.1 Monocular Visual-Inertial SLAM Performance

The relationship between the flight speed and uncertainty level is shown in Fig. 3.12.
To evaluate the monocular keyframe-based visual-inertial SLAM performance,
the root mean squared error (RMSE) between the ground truth and the SLAM
estimation, i.e., RMSEqg, is used. In Fig. 3.12, the average SLAM performance
results are shown with different UAV flight speeds. As can be seen from Fig. 3.12,
the SLAM algorithm obtains the best position estimation result during the UAV
hovering flight tests. As the UAV flight speed is increasing, the position estimation
accuracy is decreasing. The average RMSEqgs for Tests 2, 3 and 4 have increased
by 13.9cm, 16.0cm and 19.9cm when compared to the UAV hovering flight tests.
Fig. 3.12 also shows that increased flight speed results in higher position input
uncertainty. Similarly, experiments showed that variation amount in illumination,
reduction in detected features rotation and translation speeds are all proportionally

correlated to increasing uncertainty /noise levels in the position estimation inputs.

037

0.256

0.25¢

Test1l Test2 Test3 Test4

Figure 3.12: SLAM performances under different UAV flight speeds.
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For example, the quadrotor UAV during the hovering flights always looks at the same
scene, i.e., same illumination and number of detected features, without capturing

the blurred image frames.

Fig. 3.13 shows z, y and z translation estimations (red colour) of two rounds
of the trajectory following application which is controlled by the Cen-NSFLC
with a maximum flight speed of 2.0m/s. The ground truths (black colour) of
the z, y and z translations from the OptiTrack system are used for performance
comparisons. As can be seen from Fig. 3.13, although faster flights result in more
challenging pose estimations in the monocular keyframe-based visual-inertial SLAM,
the pose estimations can match the ground truths fairly well. Therefore, the SLAM
estimations are accurate enough to be used as the control inputs in the longterm

navigation of the real-world quadrotor UAV.

Start Location

=Ground Truth
5 ‘ . . =SLAM Estimation

4 8 12 16
Time |[s]

X [Ill]
o

(a) x translation with maximum flight speed 2.0m/s

y [m]

4 8 12 16
Time [s]

(b) y translation with maximum flight speed 2.0m/s

Location 2

0_5 I I 1 1
4 8 12 16

Time [s]

(¢) z translation with maximum flight speed 2.0m/s

Figure 3.13: SLAM results with maximum flight speed 2.0m/s.
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3.5.2 Discussion

The control performances of PID, SFLC, Sta-NSFLC and Cen-NSFLC are evaluated
based on the RMSE between the ground truth and the reference trajectory, i.e.,
RMSEgr. Fig. 3.14 shows the control performance results, i.e., average RMSEggrs
calculated from one hundred flight tests. From Fig. 3.14, it can be observed that
the Cen-NSFLC consistently has the best performance across all speed levels. The
control performances of the FLCs are better than those of the conventional PID

controller. On the other hand, NSFLCs can obtain superior control performance
compared to the SFLC, while Cen-NSFLC outperforms Sta-NSFLC.

Figs. 3.15 and 3.16 show the control performances of all the controllers in one round
of the trajectory following application with the maximum flight speed of 2.0m/s. As
can be seen from these three figures, all the controllers can navigate the quadrotor
UAVs to follow the online generated trajectory, but the control performance ranking
is Cen-NSFLC, Sta-NSFLC, SLFC, and PID controller. Although the Euclidean
errors of SFLC and Sta-NSFLC in some parts of the trajectory are less than the one
of Cen-NSFLC, the overall control performance of Cen-NSFLC is better than the
ones of SFLC and Sta-NSFLC. Meantime, Cen-NSFLC outperforms PID controller
during all parts of the trajectory following.

 [Em@PID
08 gmsrrc
[]Sta-NSFLC m_

'g 06 L DCQD—NSFLC
& —_
2 0.4
=
o

0.2

L

Test 1 Test 2 Test 3 Test 4

Figure 3.14: Control performances of four controllers (PID, SFLC, Sta-NSFLC
and Cen-NSFLC) in four different scenarios.
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Figure 3.15: Trajectory following performances of all controllers in Test 4.
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Figure 3.16: Euclidean error evolution of all controllers in Test 4.

3.6 Conclusion

In this chapter, two novel NSFLC with center-based and similarity-based prefiltering
were developed and deployed to control a quadcopter UAV for the 3D trajectory
tracking application. A comprehensive comparison and evaluation were carried
out with three different types of NSFLCs, i.e., Sta-NSFLC, Cen-NSFLC and
Sim-NSFLC, under different levels of input uncertainty, i.e., measurement noise.
Extensive simulation and experimental tests show that Sim-NSFLC can obtain
better control performances compared to Sta-NSFLC and Cen-NSFLC, especially
at the higher input noise levels. Moreover, the higher input fuzzification has more

capability to a handle higher level of input noise.



Chapter 4

Interval Type-2 Fuzzy
Logic-Based Control

THOUGH T1-FLCs are widely used, type-1 FSs are able to deal effectively only
with bounded levels of uncertainty, while real-world applications frequently have to
deal with high levels and multiple sources of uncertainties [4, 118]. Therefore, there
has been a growing interest in a more advanced form of FLCs, namely T2-FLCs [65].
Better handling of the uncertainties using T2-FLCs is provided by the additional
degree of freedom benefiting from FOU in their FSs [6, 119]. However, the additional
complexity arises from the inclusion of FOU as well as the third dimension [7].
Therefore, the research has tended to focus on IT2-FLCs [8], rather than on general
T2-FLCs [9], because the mathematical formulation of general T2-FLCs is much
more complex than that of IT2-FLCs [10, 74]. The adoption of IT2-FLC allows
reducing the computational complexity which is an immense benefit in real-time

applications [11].

In this chapter, potentials of different IT2-FLCs are explored under various oper-
ational conditions. First, Sections 4.1 revises the definition of I'T2-FLCs. Then,
Sections 4.2 shows experimental results on quadrotor UAV. Finally, some conclusions

are drawn in Section 4.3.

Supplementary Material:
ROS package for the proposed IT2-FLCs: github.com/andriyukr/controllers.
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4.1 Mathematical Preliminaries

Commonly, T2-FLS consists of five elements: fuzzifier, rule base, inference engine,
type reducer and defuzzifier. All these components are interconnected, and Fig. 4.1

shows the general structure of T2-FLS. Similarly to T1-FLS, T2-FLS can be seen

T
as a mapping from the crisp input o = [01 e UNI:| , where Ny is the number of

T
crisp inputs, to the crisp output 12 = [(plT? e gp%zo} , where Np is the number
of crisp outputs. Initially, the fuzzifier transforms crisp inputs o into fuzzy input

sets 2712,

Definition 4.1.1. If o is a crisp input to T2-FLS, and U4(o) is the universe of the
secondary variable v, a type-2 FS A is described by a type-2 MF, p ;(o,u) € [0, 1],
where 0 € R and v € Uj(o) C [0,1], i.e.:

A=A{(o,v,p3(0,v)) | pi(o,v) €[0,1] YoeR VYveUi(o)C[0,1]}. (4.1

Definition 4.1.2. If ¢ is a crisp input to IT2-FLS, and Uj;(c¢) is the universe of
the secondary variable v, an interval type-2 FS A is described by an interval type-2
MF, pz(o,v) =1, where 0 € R and v € Uj(0) C [0, 1], i.e.:

A={(o,v,1) YoeR YoeUs(o)Cl0,1]}. (4.2)

In other words, in IT2-FSs, all the third dimension values are equal to one. An

example of three elliptic interval type-2 FSs are illustrated in Fig. 4.2.

o2
Rule base Defuzzifier |——-
R (I)Tl
o » F
—>| Fuzzifier Inference Type reducer

Figure 4.1: Structure of the type-2 fuzzy logic system.
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Figure 4.2: ”Negative” (N), "zero” (Z) and ”positive” (P) FSs represented by
three elliptic interval type-2 MFs.

Definition 4.1.3. If ¢ is a crisp input to T2-FLS, FOU of FS A is a bounded
region (grey areas in Fig. 4.2) which is defined by the union of all p;(o,v), i.e.:

FOU(A) = | J Us(0). (4.3)

ceR

Definition 4.1.4. If ¢ is a crisp input to T2-FLS, the upper MF [i;(co) is MF

which confines from top FOU(A) (coloured solid lines in Fig. 4.2); while the lower
MF p (o) is MF which confines from bottom FOU(A) (coloured dashed lines in
Fig. 4.2), i.e.:

FOU(A) Vo €R

—=FOU(A) VYo eR.

=

b

2
I

(4.4)

S

2

Remark 4.1. If iz(0) = p (o) Vo €R, then the type-2 FS A will degenerate to
the type-1 FS A with MF p4(0) =7i5(0) = p;(0) Vo €R.

Remark 4.2. A common way to extend a type-1 F'S to an interval type-2 FS is:

(o) = palo) .

1) = apa(o),
where « is the height of the lower MFs [120].

Remark 4.3. If « = 1 in (4.5), then according to Remark 4.1 the interval type-2 FS
A will degenerate to the type-1 FS A with MF p4(0) = fi;(0) = pslo) Vo eR.
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Definition 4.1.5. If Ny is the number of rules in a rule-base R, then the i** rule

R; € R,ie{l,...,Ng}, is indicated as [F — THEN statement, i.e.:

IF 0y is A;; and ... and oy, is An, ,,

i , 1e€{l,...,Ng}, (4.6)
THEN ¢; is C1; and ... and ¢y, is Cn,,i

where AM, j €{1,..., Ni}, represents antecedent F'S; while Cy;, h € {1,..., No},

represents consequent F'S.

Remark 4.4. In T2-FLS, the structure of the rule-base remains exactly the same
as in T1-FLS.

Remark 4.5. Similarly to T1-FLS, fl;?, je{l,...,N;},k € {1,...,Ng}, rep-
resents the k™ antecedent FS of the ;' input; while, Aj,i, jed{l,...,N},i €
{1,..., Ngr}, represents the antecedent FS of the j*™ input in the i*" rule.

Once the crisp inputs are fuzzified, F'Ss activate the inference engine. The inference

engine implies type-2 fuzzy output sets F from type-2 fuzzy input sets 12

Definition 4.1.6. The set of firing strengths F;(o) € [0,1]%, i € {1,..., Ng}, of
the i-th rule can be computed with the product t-norm [121], i.e.:

File) =111 A, (o))

Fi(o) = /(o) :Hfélg&i(%) 7

ie{l,....Np}. (4.7)

1

Consequently, the type reducer maps a type-2 FS F into a type-1 FS ®T! [122].

Definition 4.1.7. The A™ left and right end-points of the type-reduced set orp,
and g, respectively, h € {1,..., Np}, can be computed with KM centroid type-
reduction algorithm [123]:

(0’) _ 25:1 ?i(o;)ch,i‘FZ?;L+1 L(U)C}L,i
PLh S fi@)+Xii L(C’) he {1 N, } (4 8)
onn(o) = zf;lL(a)chﬁzfv:RH[i(a)cM ) yoo VO£, .
Rk Yty L-(U')'*‘ZfV:RH filo)

in which L and R are the left and right switching points, respectively. Usually, L

and R are computed by an iterative algorithm.

The output of FLCs must be a crisp number, this is accomplished by the defuzzifier.
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Definition 4.1.8. The h'" defuzzified output, h € {1,..., No}, can be computed

with the average defuzzification, i.e.:

orn(o) + orn(o)
on (o) = 5 :

hel{l,... Nob. (4.9)

Remark 4.6. By combining (4.7), (4.8) and (4.9), the A" defuzzified output,
h € {l,...,No}, can be computed as follows:

o S (7, 02) O+ S (TDY 14 (7)) O
o (o) = — ~
2520 (I 7y, (09) + s (0 1y ()
n Zf:l <H§VII ,uA ( J)) Ch,i + Zﬁ\;R—l—l < Jj= 1 :uA]Z U]) Chz (410)

?

23 (T s, (00)) + S e (T1 7, (0)
he{l,...,No}.

The structure of a double-input interval type-2 fuzzy PD controller, which inherits
double-input IT2-FLS, is shown in Fig. 4.3. The input scaling factors k, and k; are
chosen to normalize e and é to the universe of discourse of the antecedent MFs, i.e.,
[—1,1]. So, e and é are transformed into o, and o, respectively, before inputting
them to double-input IT2-FLS. Consequently, the output ¢*? from double-input
IT2-FLS is transformed into the control signal u by using an unscaling gain k, such
that the output is denormalized to the domain of the control signal. In the adopted

control structure, only one parameter has to be tuned, i.e., k,.

01

kp
e Double-Input p'? U
5, | IT2-FLS

d
kag;

Figure 4.3: Structure of a double-input single-output interval type-2 fuzzy PD
controller.
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4.2 Experimental Results

The antecedent MF's are defined as novel elliptic [T2-FSs which are depicted in
Fig. 4.2. The conventional way to represent elliptic IT2-FSs is

4 ( a1
a 955k . . ) )
7i2(0) i/ 1— 4 G — ik < 05 < g+ djg
arlog) =
J
( O']_Ck a2 ‘
ar 1 _ |Zi=Cik . . . .
wo(oy) = 1 i yCik — djk < 05 < G+ djg
w(o) =
Aj
0 05 < Cik = djks Cig + djg < 05,

where ¢; 5, and d;, are centers and widths of MFs, respectively. The parameters a;
and ay determine the width of FOU of each MF, and these parameters should be

selected in the following form:

aq 2 1
(4.12)
0 < ag S 1.

4.2.1 Setup

The experimental flight tests for the trajectory tracking problem were conducted in
the indoor environment. The laboratory environment is designed to use a set of
eight OptiTrack Prime 13 cameras, to provide real-time pose (position and attitude)
of the UAV with an update rate of 240Hz and accuracy around 0.1mm. The pose
data are routed to the controller through the local network. The aircraft used for
the experimental flight tests is Parrot Bebop 2 UAV, which is an attitude controlled
commercial quadrotor. The Bebop Autonomy ROS package is used to communicate

the output velocity from the controller to the quadrotor via a Wi-Fi connection.

4.2.2 Trajectory

In the experimental scenario, a circle with radius 2m is chosen for the trajectory
tracking problem. To test the stability and robustness of the controllers, the
reference speed varies along the trajectory. The profile of the desired velocity is

designed in a way to have different velocity conditions for each quarter of the circle,
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as shown in Fig. 4.4. In the first quarter (¢ € [0,7/2)), the speed gradually increases
from Om/s to 2m/s. In the second quarter (¢t € [1/2, 7)), the speed is kept constant
at 2m/s. In the third quarter (¢ € [7,37/2)), the speed is increased again to reach
4m/s. Finally, in the fourth quarter (¢ € [37/2,2)), the speed is decreased to Om/s.

Then, the new circle starts and the velocity profile is repeated.

4.2.3 Discussion

The experimental results are evaluated through the most commonly used error-based

measures, i.e., root mean squared error (RMSE):

Np

1 2

RMSE = | — -, 4.13
o ; (P; — Pi) (4.13)

maximum absolute error (MAX):
MAX = r—pi 4.14
max [|p; — pill, (4.14)

and mean absolute error (MAE):

1 &2

MAE = — oyl 415
N, ; Ip; — P (4.15)

T T
where Np is the number of data samples, p; = [mz‘ yr z;‘} and p; = [x, Yi zz}

are desired and actual position for the ¢-th sample, respectively.

4

Q1 Q2 Q3 Q4 Q1 Q2 .03

v [m/s]

0 72 T 3*nl/2 2*m 5*x/2 3*r T*nl2 4*m
t [s]

Figure 4.4: Velocity profile of the desired trajectory.
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In Fig. 4.5, the trajectory tracking performance of interval type-2 fuzzy logic
controller with elliptic MF's is compared with the performances of conventional
PD controller, type-1 fuzzy logic controllers with Gaussian and elliptic MF's, and
type-2 fuzzy logic controllers with Gaussian MFs. The projections of the trajectory
on z, y and z axes of five complete circles are shown in Fig. 4.6. As can be seen,
the steady-state error is reduced because of the filtering capabilities of fuzzy logic
controllers. This can also be seen from the Euclidean error and the average RMSE

values from ten experiments which are shown in Fig. 4.7 and Table 4.1.

05 = = .reference

= PD
Type-1 Gaussian
Type-1 Elliptic
Type-2 Gaussian

051 Type-2 Elliptic

Figure 4.5:

2 [m]
y [m]

13} [= = ‘reference
——rD
12 L |[——Tyve1 Gaussian
Type-1 Elliptic
14 Type-2 Gaussian
——— Type-2 Elliptic

——pD
——— Type-1 Caussian
Type-1 Elliptic
—— Type-2 Gaussian
——— Type-2 Elliptic

—— Type-1

ssian
Type-1 Elliptic
—— Type-2 Gaussian
——— Type-2 Elliptic

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

(a) z-axis tracking. (b) y-axis tracking. (c) z-axis tracking.

Figure 4.6: Projection of trajectory tracking along x, y and z axes by five different
controllers.
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251
2 [ \
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S 15r PD
5 Type-1 Gaussian
o Type-1 Elliptic
g Type-2 Gaussian
= 1 Type-2 Elliptic
S
=}
€2

o
o

<

0

5 10

0 15 20 25 30

t [s]

Figure 4.7: Euclidean error of different controllers.

4.3 Conclusion

Whereas type-1 and type-2 MF's are the core of any fuzzy logic system, there
are no performance criteria available to evaluate the goodness or correctness of
fuzzy MFs. In this chapter, an extensive analysis in terms of the capability of
interval type-2 elliptic fuzzy MF's in modelling uncertainty has been done. Having
decoupled parameters for its support and width, elliptic MFs are unique amongst
existing type-2 fuzzy MFs. In this investigation, the uncertainty distribution along
the elliptic MF support is studied, and a detailed analysis is given to compare
and contrast its performance with existing type-2 fuzzy MFs. Moreover, to test
the performance of FLC with elliptic interval type-2 MFs, extensive real-time
experiments are conducted for the 3D trajectory tracking problem of a quadrotor.
The results of this study might open the doors to wider use of elliptic MFs for
real-world identification and control applications as the proposed MF is easy to

interpret in addition to its unique features.

Table 4.1: Comparison results for the error from different controllers.

Controller RMSE | MAX | MAE
PD 1.595 2.224 | 1.490
T1-FLC with Gaussian MF's 1.455 2.326 | 1.339
T1-FLC with elliptic MFs 1.418 2.296 | 1.277
IT2-FLC with Gaussian MFs | 1.445 2.432 | 1.309
IT2-FLC with elliptic MF's 1.416 2.361 | 1.270







Chapter 5

Fuzzy Mapping-Based Control

r]?‘HE mathematical expression of FM provides an efficient tool to analytically
study FLCs [124]. In addition, modern computers can perform the basic algebraic
operations, e.g., additions, subtractions, multiplication and divisions, much more
efficiently than the operations on FSs, e.g., unions, intersections and implications,
needed in fuzzy logic [12]. Therefore, the availability of an analytical form of FM
will open new doors to the use of FLCs in real-time applications. Recently, FM for
the single-input IT2-FLC case has been derived in [120]. Nevertheless, an exhaustive
analysis of FM for Mamdani double-input FLCs and real-time validation of the
theoretical claims are still missing in the literature [84]. Moreover, the study of
some properties of FM for double-input FLCs, such as symmetry and monotonicity,

are missing in the literature.

In this chapter, an alternative method to derive and analyse FM for FLCs is
proposed. First, Sections 5.1 revises the definition of FM. Sections 5.2 and 5.3
present derivation and analysis of FM for T1-FLCs and for I'T2-FLCs, respectively.
Then, Sections 5.4 and 5.5 show simulation and experimental results quadrotor

UAV, respectively. Finally, some conclusions are drawn in Section 5.6.

Supplementary Material:

Matlab code for the FM generation: github.com/andriyukr/FM.

ROS package for the proposed FM controllers: github.com/andriyukr/controllers.
Video for the simulation results: tiny.cc/FM-FLC_simulation.

Video for the experimental results: tiny.cc/FM-FLC.
59
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5.1 Mathematical Preliminaries

T
Generally, FLS can be seen as a mapping from crisp input o = [01 e UNI:| ;

T
where N; is the number of crisp inputs, to crisp output ¢ = [gpl @No} ,

where Np is the number of crisp outputs [115].

Definition 5.1.1. In a general FLS, FM from o € R to ¢ € RY0 is a function
p(o) : RN — RNo,

In order to facilitate the analytical derivation, FM of double-input FLSs is considered.
However, the presented approach can be applied to FLSs with an arbitrary number

of inputs.

T
Definition 5.1.2. In a double-input FLS, FM from o = [01 02] ER*topeR
is a function p(o) : R? — R.

Remark 5.1. The unit double-input FM ¢™°(o) is defined as:

01+02

P(0) = 2 (5.1)

Definition 5.1.3. The aggressiveness € of FM is the value of its gradient d(o) =
V(o) in the neighbourhood of the equilibrium point (0,0) and in the direction of
the unit vector w, i.e.:

e =w'6(0,0). (5.2)
Remark 5.2. If the gradient of ¢™%(g) is §'%(o) = V'%(o), and w = [\/Li \%]T,
which is the unit vector in the direction of [01 02} T, then the aggressiveness of

the unit mapping in (5.1) is calculated as follows:

10 — w7510(0,0) = [_ } H - g (5.3)
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5.2 Type-1 Fuzzy Mapping

T
Definition 5.2.1. In double-input T1-FLS (DI-T1-FLS), FM from o = [gl 02] €
R? to ! € R is a function ¢! (o) : R* — R.

In order to facilitate the analytical derivation, the antecedent MF's are designed to
be triangular type-1 FSs, as illustrated in Fig. 5.1. The typical representation of a
triangular MF is [125]:

0 , 05 < Qg—1

gj—ap_1

a1 < 05 < ay

o) = | o (5.4)
J

Ap41—0; .
ar—ar W <05 S Qg

0 0 > Ay,

where k € {1,2,3} and j € {1,2}. From Fig. 5.1 can be seen that ay = —o0,
a; = —1,as =0, a3 =1 and a4y = +00. Besides, the consequent MFs are designed
to be singleton, as illustrated in Fig. 3.3. Moreover, the rule-base in Table 3.1 is

used.

For the analytical analysis, complex symbolic computations are needed. Thus, an

equivalent definition of (5.4) is used:

par(0;) = max (min (Oj I 2 S Uj),o), (5.5)

b
A — Q-1 Qg1 — Ak

-1 0 1 9

Figure 5.1: ”Negative” (N), ”zero” (Z) and ”positive” (P) FSs represented by
three triangular type-1 MFs.
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where max() and min() functions are reformulated as algebraical functions:

max (a, b) :w R WbcR
wro ot Va € Vb € R. (5.6)

min (a,b) = 5

5.2.1 Derivation of Fuzzy Mapping for DI-T1-FLS

The rule-base in Table 3.1 contains nine rules; consequently, Np = 9. By using (3.5),

the output from FLS is as follows:

Z?:l MAl,i(Ul) ' MAz,i(UQ) ’ Cl

T1
¢ (o) =
Z?:l MAl,i<0-1> : N’A2,i(0-2)

(5.7)

Then, combining Definition 3.1.4, Table 3.1 and Fig. 5.1, it is clear that ps, , =

KA s = KA1 3 = HAyy = HAgy = HAy 7 = HAL, HA , = HA s = HAye = HAys = HAys =
Pass = paz and fia, ; = fla, g = [La1g = LAy = [Ass = Mz = Mas, Which are
defined in (5.5). Combining Definition 3.1.4, Table 3.1 and Fig. 3.3, it is clear that
Ci=0,=C,=C'=-1,03=0;=C,=C*=0,and Cg =Cy = Cy = C° = 1.

Hence, after performing some simplifications in (5.7), ¢T!(o) is obtained:

_oi|oz + a0

Tl(
2

(5.8)

¢ (o) =01+ 09

The expression in (5.8) describes DI-T1-FLS in an analytical form. Therefore,
instead of considering DI-T1-FLS as a grey-box, its symbolic representation, i.e.,
e
and o9 to the output ¢, is plotted in Fig. 5.2.

o), can be used. The generated fuzzy surface, which maps the two inputs oy

5.2.2 Analysis of Fuzzy Mapping for DI-T1-FLS

From the asymptotic computational analysis, the runtime complexity for T1-FLS
represented by (3.5) is O(2R;NgrRo) which is linear w.r.t. Ny, Ng and No. While
the runtime complexity of FM for T1-FLS represented by (5.8) is O(1) which is
constant. Therefore, independently on the number of inputs, rules and outputs in

T1-FLS, the computational complexity of FM for T1-FLS is constant.
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Figure 5.2: Fuzzy surface generated by DI-T1-FLS.

T
1 1 . . .
NG 75] which is the unit
vector in the direction of [01 02], by using Definition 5.1.3, the aggressiveness of

The gradient of o™ (o) is §™ (o) = V(o). If W = [

™ becomes:

1
T1 _ & TsT1 _ (1 _
e = wT6"(0,0) = [ﬁ 75] H = V2. (5.9)
Therefore, the aggressiveness of DI-T1-FLS is constant. From (5.9) and (5.3), it
can be observed that ¢T!(o) is more aggressive than ¢°(o) in the neighbourhood

of (0,0), since e™ > £1°.

Theorem 5.2.1 (Symmetry of type-1 FM). If o (o) indicates FM of DI-T1-FLS,
then

i) ™ (0y,07) is an even symmetric function w.r.t. the bisection of the first
(o1 >0, 03 > 0) and third (o7 < 0, 05 < 0) quadrants in the Cartesian plane,

ie., pl(01,02) = " (02,01) Vo €[-1,1] Vop € [-1,1];

ii) ¢T'(01,09) is an odd symmetric function w.r.t. the bisection of the second
(o1 > 0, 02 < 0) and fourth (o < 0, 09 > 0) quadrants in the Cartesian plane,
ie., (=01, —09) = —¢"(01,02) Vo, € [-1,1] Vo, € [-1,1].

Proof. Using (5.8), it follows:

T1 _ loaloytoalo].
and ¢ (09, 01) = 0y + 0] — PHTEI

oy, 00) Vo, €[-1,1] Vou € [—1,1];

Tl( |o1|o2+o1|o2]
2

01,03) = 01 + 03 —

i) ¢
therefore, QOTI(Ul, 09) = ¢
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T1 _ —|o1]oe—o1]og| lo1]|oe+oroa]
(—01,—02) = —01 — 09 — 52 -0yt Vs =

Tl(

i) ¢ = —0
—pM(0y,09);  therefore, ¢

[—1,1] Vo, € [-1,1].

—01,—09) = —poy,09) Vo €

[]

Corollary 5.2.1.1. Using the second property in Theorem 5.2.1, ¢(o) can be
rewritten as:

ptl (o) =—¢"(-0). (5.10)
Theorem 5.2.2 (Continuity of type-1 FM). If ¢T!(o) indicates FM of DI-T1-FLS,
then ¢T!(o) is a continuous function in the region [—1,1]* w.r.t. its input variable
o, ie., o e CO([-1,1%).

Thl(g) = 01 + 09 and

Proof. First, (5.8) is decomposed into two components: ¢
o112 (o) = \01|0242r01|02|

R2. On the other side, it can be observed that lim ¢™'?(a) = p*1?(c) Ve € R%
o1—C

o) . Since ¢™!(o) is a polynomial function, it is continuous on

Therefore, T1?(a) is also continuous on R?. Since ¢!(o) is a linear combination of

continuous functions, i.e., p11 () = T () —TH?(a), (o) is also a continuous

function.

]

Corollary 5.2.2.1. If the control inputs to the double-input type-1 fuzzy
PD (DI-T1-FPD) controller are continuous, then the control output from

DI-T1-FPD controller is also continuous.

Theorem 5.2.3 (Monotonicity of type-1 FM). If (o) indicates FM
of DI-T1-FLS, then ¢'!(o) is a monotonic increasing function in the region [—1, 1)

w.r.t. its input variables o, i.e., %@ >0A %& >0 Voel-1,132
1 g2

Proof. From 5.8, a(;o:ll =1- w. By observing that |o3| = o9sign(oy),
% -1 <72(sign(alé—sign(zm))7 in which Ug(sign(zfl%—sign(ag)) c [_1’ 1] Vo € [_1’ 1]2

Consequently, 6—8‘%1 € [0,2] Vo € [-1,1)% and, thus, %% >0 Vo e [-1,132
From which follows that ¢(o) is an increasing function w.r.t. o; Vo € [—1,1]°.
From the first result in Theorem 5.2.1, if % >0 Vo € [-1,1]% then 85‘?: >

2

0 Vo € [—1,1]%. Therefore, ¢! is a monotonic increasing in the region [—1, 1]

w.r.t. its input variables o, and os.
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5.3 Interval Type-2 Fuzzy Mapping

Definition 5.3.1. In double-input IT2-FLS (DI-IT2-FLS), FM from o =
T
[01 02} € R? to '™ € R is a function (o) : R? — R.

As described in Remark 4.2, type-1 FSs in Fig. 5.1 can be extended to interval
type-2 FSs in depicted Fig. 5.3.

5.3.1 Derivation of Fuzzy Mapping for DI-IT2-FLS

By observing the structure of the rule-base for double-input FLS in Table 3.1, each
consequent MF (BN, Z, BP) can be implied from exactly three rules. Consequently,
L and R in Definition 4.1.7 are multiples of 3 in the interval (1, N = 9), i.e.,
L € {3,6} AR € {3,6}. By using the constraint that L < R, three distinct cases
for the switching points can be determined, i.e., < {L =3,R=3},{L =3,R =
6},{L =6,R =6} >. Each of these cases defines a region (21, Qy, Q3) on [0 X 09|

plane, as shown in Fig. 5.4. Hence, 2y, {25 and (23 are analytically defined as:

O ={{o1,00} € [-1,12 | 09 > —1,09 < wia(0y)}
Qy = {{o1,02} € [-1, 1]2 | 09 > wia(01), 00 < wag(o1)} (5.11)

Q3 = {{o1, 00} € [-1,1]* | 02 > wa3(01), 09 < 1},

Figure 5.3: ”Negative” (N), "zero” (Z) and ”positive” (P) FSs represented by
three triangular interval type-2 MFs.
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-1 -0.5 0 0.5 1

g1

Figure 5.4: Three regions of DI-IT2-FLLC FM and two contours between these
regions.

where wis and wog are the contours which separate €2; from €2, and €2 from g,
respectively. For each region corresponds FM, i.e., p1™%(a), o5 (o) and @i (o).
Thus, ©'?(o) can be broken down by using (4.9):

o

© 0‘) _ ¢L=3(U)';4PR=3(U)’ o€

T2(g) = o2 (g) = <PL=3(0')‘;PR=6(‘7)’ o< (5.12)

'

¢£T2(o.) _ WL:G(G)';“PR:G(O')’ o< Qs

The determination of the left and right end-points allows to derive the output
of DI-IT2-FLS in a closed-form. Therefore, it is possible to find FM ¢(o) by
substituting (4.7) into (4.8):

o1(o2+1)—0o102+02(01+1)

SDL:?’(U) T araz(oi1+1)(o2+1)—o1—02(01+1)
_ aiagoz—aiazor(oz—1)

< @L:G(U) T (01—1)(o2—1)+aiaz(o1+02—0201) (5 13)
(0’) _ aragoit+aiazoz(o1+1) '

PR=3 T (o1+1)(o2+1)—aiaz(o102+01+02)
o1(l—o2)+o102—02(1—01)

\SOR:G(O-) T araz(o1—1)(o2—1)—01—02(01—1)?
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Now, ¢112(a), pi?(o) and i (o) are computed with (5.12) and (5.13):

ITQ(O.) — 1 araz(oio2—01—02) + 0102—01—02
Y1 2 \ (c1—1)(o2—1)+araz(o1+02—0201) ajaz(o1—1)(o2—1)+014+02—0102
IT2(O.> _1 o2(01+1)—a1a01(g2—1) _ o1(02—1)—a1ap02(o1+1)
P2 2 \ o2(014+1)—arazo1—araz(o1+1)(o2—1) o1(o2—1)4+aiazoa—aiaz(o1+1)(o2—1)
IT2(O.) _1 aiaz(o1+02—0102) - T102—01—02
@3 2 (01—l)(02—1)+o¢1o¢20'1—a1a20'2(0'1—1) a1+02—0102+a1a2(01—1)(02—1) :
(5.14)

Finally, by definition the contours which separate {2; from 25 and 25 from €23,

respectively, are:

wiz ={o € [-1,1]* | vr=3(0) = pr=s(o)}

(5.15)
woy ={o€[-1, 1]2 | or=3(0) = pr=6()},
wy2 and wo3 are computed as functions of only oy with (5.13):
——1a2gL o1 <0
w12(01) = { Mreeaat 1 (5~16)
01+a1a2—la1a201’ o120
and
ala —zr_:-loc ago’? 01 < O
CUQg(O'l) = 1oz 1 1201 (517)
— g op > 0.

ajago1—o1+1?

The expression in (5.14) describes DI-IT2-FLS in an analytical form. Therefore,
instead of considering DI-IT2-FLC as a gray-box, its explicit representation in
(5.14), i.e., '?(a), can be used.

Remark 5.3. If a; = 1 and ay = 1, then ¢'?(o) in (5.14) will degenerate to
e (o) in (5.8).

Remark 5.4. It can be observed from (5.13), (5.14), (5.16) and (5.17) that «; and
ap are always coupled, i.e., ayas. Therefore, it makes sense to perform the analysis
only w.r.t. @ = ajap. The reason why a; and as are always coupled is because the
meet operation used to compute the lower firing strengths f (o), i € [1, Ng], in

(4.7), is the product ¢-norm.
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5.3.2 Analysis of Fuzzy Mapping for DI-IT2-FLS

From the asymptotic computational analysis, the runtime complexity for I'T2-FLC
represented by (4.10) is O(4N;NgNo) which is linear w.r.t. Ny, Ng and Np. While
the runtime complexity of FM for IT2-FLC represented by (5.14) is O(3) which is
constant. Therefore, independently on the number of inputs, rules and outputs, the
computational complexity of FM for IT2-FLC is constant.

1 1 T . .

7 75] which is the
unit vector in the direction of [01 02} , by using Definition 5.1.3, the aggressiveness

The gradient of p'T?(o) is 6'12(0) = V'T2(0). If W = [

of 2 becomes:

2 1
T2 — {71120 () = % (a + a) . (5.18)

This relation is depicted in Fig. 5.5. For small values of «, the behaviour of
DI-IT2-FLC becomes more aggressive around (0,0); while, for high values of «, the
behaviour of DI-IT2-FLC becomes less aggressive around (0, 0).

Remark 5.5. It is noted that pT!(o) is not more aggressive than p'™%(a), since
g2 > &M Vo and "2 = ™ only when a = 1. Consequently, it is noted that
©T0(a) is less aggressive than ¢'?(a), since £ > £ Va.

2(g1,04), are plotted in Fig. 5.6 for

The generated FSs, which map o7 and o3 to ¢
a € {0.01,0.04,0.09,0.16, 0.25,0.36, 0.49, 0.64, 0.81}. Distinct F'Ss can be generated

by simply varying only one parameter of FOU, i.e., a.

10

8IT2

0 0.2 0.4 0.6 0.8 1
a

Figure 5.5: Relation between aggressiveness of ¢'12(¢) and o
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Figure 5.6: Fuzzy surface generated by DI-IT2-FLS for different values of a.

Theorem 5.3.1 (Symmetry of interval type-2 FM). If ¢'2(o) indicates FM of
DI-IT2-FLS, then

IT2(

i) ¢''%(01,09) is an even symmetric function w.r.t. the bisection of the first

(01 > 0, 09 > 0) and third (o; < 0, o2 < 0) quadrants in the Cartesian plane,

ie., o' (01,00) = P (09,01) Voo € [-1,1] Vou € [~1,1];

M2(51,09) is an odd symmetric function w.r.t. the bisection of the second

i) ¢
(01 >0, 092 < 0) and fourth (o < 0, 03 > 0) quadrants in the Cartesian plane,

Le., (=01, —09) = =@ (01,09) Vo, € [-1,1] Vo, € [-1,1].
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Proof.

i) To prove this property, the sufficient and necessary conditions are

9011T2(<71,<72) = <P11T2(U2,01)a <P§T2(01,U2) = 80£T2(‘72701) and @éTZ(Ul,UQ) =

o 12(09,01), which is immediate from (5.14).

ii) To prove this property, the sufficient and necessary conditions are
P12 (=01, —03) = =12 (01,09) and @y ? (01, —03) = —,*(01, 02), which
is immediate from (5.14).
O
Corollary 5.3.1.1. Using the second property in Theorem 5.3.1, p3(o) can be

rewritten as:

Lemma 5.3.2. If p;_3(0), ¢1—¢(0), pr=3(o) and pr_¢(o) indicate left and right
FMs of the type-reduced set, wys and wag are the switching borders between pg_s3(o)

and pr—¢(o) and between ¢;_3(0) and p_g(0), respectively, then

wr=3(0) = pr=s(0) = 0] 02 = wy3(01) Vo (5.20)

Yr—3(0) = pr_e(0) =0 | 03 = wia(01) Voi.

Proof. By substituting (5.16) and (5.17) into (5.13), it is possible to observe
that Yr-3(0o1,w12(01)) = 0 A pr=s(01,w12(01)) = 0 A pr—3(01,wa(01)) = 0 A

or=6(01,was(01)) = 0.
]

Theorem 5.3.3 (Continuity of interval type-2 FM). If ©'2(o) indicates FM of
DI-IT2-FLS, then ¢'™?(o) is a continuous function in the region [—1,1]? w.r.t. its

input variable o, i.e., "2 € C°([-1,1]?).

Proof. As can be observed from (5.13), no vertical asymptotes exist in ¢r_3(o),
vr=6(0), Yr=s(o) and @r_g(o) in their domains of definition Q; U Qq, Qg,
Q, and €y U Q3, respectively. Namely, llji_rngzg(a) = pr=3(c) Vo € QU
Qy A ;1_I£1C vr—¢(0) = pr(c) Vo € Q3 A (171_1& Yr=3(0) = pr=s(c) Yo €
O A lim pr_g(o) = ¢rs(c) Vo € Qy U Q3. Therefore, pr_3(o) is continu-
ous 0;1?51 U Qs, ¢r—¢(o) is continuous on Q3, pr_3(o) is continuous on §2; and

vr—6(0) is continuous on Qs U Q.
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Besides, by using Lemma 5.3.2, (lrliri pr—s3(o) = ilirt vr—¢(0) =0 Vc = [er, 0 |
cy = wos(c1) A ilir}: Yr=3(0) = ilinc vr=¢(0) =0 Vc =lc,co] | ca =wia(c1). Thus,
also the continuity on the border wys for ¢ (o) and on the border wis for pg(o)
is proven. Therefore, oy (o) and pr(o) are continuous in the region [—1,1]?, i.e.,
pr € CO[=1,1]*) Npr € CO([-1,1]%).

Lastly, the Theorem of Continuous Functions states that “the sum of a finite
number of continuous functions is a continuous function”. From (5.12), ¢i12(o),

o2 (o) and ¢i? (o) are sums of continuous functions pr—3(o), (o), pr=3(c)

and @r—g(o). Then, also pI™?(a), pi?(o) and pL?(o) are all continuous in the
region [~1, 12, i, ¢iT2 € CO([1, 12) A T2 € CO((—1, 1]2) A T2 € CO((—1, 1]2).
From (5.12), ¢'™2(o) is a combination of continuous functions ¢1*?(a), ¢i? (o) and

©i?(a). Therefore, ¢'?(a) is also a continuous function in the region [—1,1]%.

]

Corollary 5.3.3.1. If the control inputs to the double-input interval type-2 fuzzy
PD (DI-IT2-FPD) controller are continuous, then the control output from the

DI-IT2-FPD controller is also continuous.

Theorem 5.3.4 (Monotonicity of interval type-2 FM). If ©'?(o) indicates FM of
DI-IT2-FLS, then (o) is a monotonic increasing function in the region [—1, 1]

w.r.t. its input variables o, i.e., 22— > 0 A % >0 Voe[-1,1* Vae[0,1].

0o

Proof. Firstly, let’s show that (o) is an increasing function w.r.t. oy Vo € [—1,1]2.
From 5.14, 261 a(oa+1) ok a(a02?~02+1)

rom o.1%, dor (01+02+0102—a01—aag—cx0102+1)2 dor 2(01+a+0102—a01—a0102)2
a(a720'270'22+20402+a0'22) 3&013T2 a(l—ag)

2(a—02+0102+a02—a0102)2 0o - (0’10’2—0’2—O’1+aa'1+a0'2—aa'10'2+1)2 : COHSunGntlY’

8(,011T2 8(,012T2
(o2

5o = 0 Vo € [0,1] Vo, € [0,1] Va € [0,1] and 52— > 0 (Vo €
[~1,0] Vo € [0,1] V Vo, € [0,1] Yoy € [~1,0]) AVa € [0,1], which is its
definition domain, and 8;52 >0 Vo, €l0,1] Vop€0,1] Vo € ]0,1]. Therefore,
©™? is a monotonic increasing in the region [—1,1]? w.r.t. o;. From the first result

in Theorem 5.3.1, if ¢ is a monotonic increasing in the region [—1,1]? w.r.t. oy,
then 2 is a monotonic increasing in the same region also w.r.t. o,. Therefore,

©™? is a monotonic increasing in the region [—1, 1]> w.r.t. both oy and o5.
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5.4 Simulation Results

For the dynamical simulations, the Y6 coaxial hexacopter is implemented in ROS
environment and Gazebo simulator which provides a seamless connection for the
developed algorithms between the simulation and real-world applications. Various
FOU parameters settings (PSs) are investigated to validate the theoretical analysis.
The following PSs are selected: PS-1: o = 0.09, PS-2: o« = 0.25, and PS-3:
a = 0.81. For PS-1, it is expected that the resulting DI-IT2-FPD controller will
have a fast response time. However, the control system might not be robust against
nonlinearities and uncertainties. For PS-2, it is expected that the resulting DI-IT2-
FPD controller controller will increase the damping when the error is small which
will enhance the system response. On the other hand, the controller should decrease
the damping when the error is relatively large. For PS-3, it is expected that the
resulting DI-IT2-FPD controller will be potentially more robust against parameter
variations and disturbances. However, the controller might have a slower response

time.

5.4.1 Trajectory

In the simulation scenario, a square-wave 3D trajectory is chosen to test the stability
and robustness of each controller with different PSs. The navigation of the UAV

combines long and short straight lines path as well as hovering:

*  _ |k
v = 3]
yi = 10| =t et (5.21)
zp =1,

where k € NT and |x] is the largest integer not greater than value x. First, UAV
hovers at [0,0, 1]m. After that, UAV flies to the next way-point at [1,0, 1]m and
hovers for 10s before flying to the next way-point. This type of trajectory is often

used in autonomous UAV mapping and exploration scenarios.
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5.4.2 Discussion

The 3D trajectory tracking of DI-IT2-FPD controllers with PS-1, PS-2 and PS-3 is
shown in Fig. 5.7a; while the Euclidean error is shown in Fig. 5.7b. The position
responses projected on z, y and z axes are shown in Figs. 5.7c-5.7e. As can be
seen from Fig. 5.7, the controller with PS-1 has an oscillatory behaviour, while the
controller with PS-3 is relatively slow in converging to the desired value. On the
other hand, the controller with PS-2 combines the characteristics of both controllers
with PS-1 and PS-3; it is fast with smaller overshoot and no oscillations. The
response properties are also given in Table 5.1. As can be seen from Table 5.1, DI-
IT2-FPD with PS-1 has shorter rising time but longer settling time and overshoot,
while DI-IT2-FPD with PS-3 has smaller overshoot but longer rise time. What is
more, DI-IT2-FPD with PS-2 results in the lowest mean squared error value and

settling time.

127
—PS-1 ——PS-2 PS-3
= =desired L
—PS-1 10
—PS-2 g ‘ ‘
F |
PS-3 5 8 ‘ |
g \
1.5 o
g 1 g 6 2
o 0.5 = \m
s 4 o =
A 38 \40 42 \
2 [ | 1
0 b= L“-,-:.-:;z-; \‘ __4L_ \‘ [L‘ Lﬁ
0 10 20 30 40 50 60
t [s]
(b) Euclidean error.
4 12 1.5
- = desired - —desired - = desired
—PS1 | b 10 | —ps1 I_r;‘ ren
31| —ps2 VAR | |—ps2 |, ! —PS2
8 1) PS-3 Ij PS-3
L 1
. — 6 1 .
e = ! E o1ks |
oL 7777
ol 2 VL1416 181 0.9 :
| 0 RN ) 0.8
_1 5 s 16 18 20
0 10 20 30 40 50 60 0 10 20 30 40 50 60 - 0 10 20 30 40 50 60
ts| t s ts]
(¢c) z-axis tracking. (d) y-axis tracking. (e) z-axis tracking.

Figure 5.7: Trajectory tracking of DI-IT2-FPD position controllers with different
PSs.
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Table 5.1: Properties of different controllers.

|DI-IT2-FPD controller || PS-1 | PS-2 | PS-3 |

Mean squared error, [m] || 0.777 | 0.748 | 0.821
Overshoot, [m] 0.405 0.069 [ 0.031
Rise time, [s] 0.80 1.18 3.32
Settling time (5%), [s] - 1.71 2.53

On the other hand, from the analysis in Fig. 5.5, PSs with small value of «, e.g.,
PS-1, should result in a more aggressive behaviour. Moreover, PSs with high
value of a, e.g., PS-3, should result in a smoother behaviour. Furthermore, PSs
with intermediate value of «, e.g., PS-2, should result in a moderate behaviour.
Therefore, it can be concluded that the simulation results match with the theoretical

expectations.

5.5 Experimental Results

The experimental flight tests are conducted in the motion capture system, which
provides in real-time the quadcopter’s position: x, y and z coordinates. The
OptiTrack cameras are able to recognise a particular object according to the pattern
of the reflective markers fixed on the object. The cameras provide the estimated
position at a rate of 100Hz. Next, the control signal is computed by the ground
station (CPU: 2.6GHz, 64bit, quad-core; GPU: 4GB; RAM: 16GB DDR4) and sent
to the quadrotor at a rate of 100Hz.

5.5.1 Trajectory

In the experimental scenario, a slanted square-shaped 3D trajectory with 2m square’s
side, shown in Fig. 5.8a, is chosen to test different controllers. This trajectory is
designed to combine several manoeuvres which include hovering, straight line path,
climbing and descending motion. The trajectory includes four way-points, located
at {[1.0,—-1.0,1.2],[-1.0,-1.0,0.8],[—1.0,1.0,0.8], [1.0, 1.0, 1.2] }m. Initially, UAV
hovers at [1, —1,1.2]m. Then, it starts flying towards the next way-point located at

[—1.0,—1.0, 0.8]m where it hovers for 10s before moving to the next way-point.
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Remark 5.6. In the considered case study, the maximum position error is 2m,
therefore, the proportional input scaling factor is k, = %; while the maximum speed
error is 2m/s, so the derivative input scaling factor is ky = % In addition, the
denormalization gain is tuned by trial-and-error method and set to k&, = 3.

5.5.2 Discussion

The results of 3D trajectory tracking of the designed DI-T1-FPD controller and
DI-IT2-FPD controllers with PS-1, PS-2, PS-3, PS-4 and PS-5 are plotted in
Fig. 5.8a; while the Euclidean error is shown in Fig. 5.8b. The position responses
projected on z, y and z axes are shown in Figs. 5.8c—5.8e. These figures show that
DI-IT2-FPD with low a (PS-1) has a high overshoot with an oscillatory action,
while DI-IT2-FPD with high o (PS-5) has no overshooting with relatively slow
convergence to the desired value. At the same time, DI-IT2-FPDs with intermediate
a (PS-2 and PS-3) combine the aspects of both smooth and aggressive controllers.

They are fast in converging with low overshoots and small oscillations.
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Figure 5.8: Trajectory tracking of different DI-IT2-FPD controllers in absence of
wind.
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Repeating the experiments ten times for each controller, Table 5.2 shows the
calculated Euclidean MAE, MVCS for z and y axes, mean overshoot, mean rise
time and mean settling time at 5% of the desired value. The MVCS is computed as

Np—1

1 021 — 071 + 611 — 1)
M — Z+1 A l+1 1 22
VCS 3 5 : (5.22)

where Np is the number of data samples, and 67 and ¢; are commanded pitch
and roll angles of UAV for the i-th sample, respectively. As can be observed
from Table 5.2, DI-IT2-FPD controller with PS-3 has the lowest MAE value since
it benefits of the best combination of aggressiveness, when UAV is far from the
desired position, and smoothness, when UAV is close to the desired position. At
the same time, DI-IT2-FPD controller with PS-5 has the lowest MVCS value and
smallest overshoot since it generates smooth control commands. On the other hand,
DI-IT2-FPD controller with PS-1 has higher overshoot but the smallest rise time.
The settling time at 5% of the final value is the lowest for DI-IT2-FPD controller
with PS-4 which undershoots the desired position and is fast to stabilize UAV.

To check the robustness of the designed controllers, wind disturbances have been
introduced. The maximum wind gust is around 5m/s. Table 5.3 shows the average
properties of DI-IT2-FPD controllers after ten experiments for each case. As can be
observed, in the presence of wind the Euclidean MAE increases for all the controllers.
However, DI-IT2-FPD controller with PS-3 has a good capability to capture the
wind disturbance, and it results again in the lowest MAE value. The intensity of
the control signal again is higher for more aggressive controllers. At the same time,
DI-IT2-FPD controller with PS-4 has the smallest overshoot because this controller,
similarly to DI-IT2-FPD controller with PS-3, has a good capability to capture the
wind disturbance. The rise time increases for more aggressive controllers because

the headwind hampers fast flight and the tailwind does not help to fly faster. While

Table 5.2: Properties of DI-IT2-FPD controllers in absence of wind.

| DI-IT2-FPD controller || PS-1 [ PS-2 | PS-3 | PS-4 [ PS-5 |

MAE, [m] 0.299 | 0.241 | 0.228 | 0.240 | 0.259
MVCS, [°] 0.314 | 0.077 | 0.072 | 0.041 | 0.030
Overshoot, [m] 0.515 { 0.230 | 0.115 | 0.023 | 0.001
Rise time, [s] 1.58 | 1.60 | 1.78 | 3.25 | 4.63
Settling time, |3 170 | 258 | 213 | 2.08 | 3.00
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Table 5.3: Properties of DI-IT2-FPD controllers in presence of wind.

| DI-IT2-FPD controller || PS-1 | PS-2 | PS-3 | PS-4 | PS-5 |

MAE, m] 0.305 | 0.259 | 0.238 | 0.250 | 0.282
MVCS, [°] 0.379 | 0.105 | 0.090 | 0.068 | 0.061
Overshoot, [m] 0.500 | 0.268 | 0.120 [ 0.018 | 0.028
Rise time, [s] 1.60 | 1.68 | 1.70 | 298 | 4.20
Settling time, [s] 483 | 2.83 | 2.10 | 2.00 | 2.78

the rise time decreases for smoother controllers because the headwind does not
reduce the flight speed and the tailwind help to fly faster. For a similar reason, the

settling time is larger for aggressive controllers and smaller for smooth controllers.

In addition, DI-T1-FPD and DI-IT2-FPD with PS-3 controllers are compared
with the conventional PD controller. The results of 3D trajectory tracking of PD,
designed DI-T1-FPD and DI-IT2-FPD with PS-3 position controllers are shown in
Fig. 5.9a. The Euclidean error is shown in Fig. 5.9b for different controllers. The

position (z, y and z) responses are shown in Figs. 5.9¢-5.9e.
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Figure 5.9: Trajectory tracking of three different position controllers in presence
of wind.
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For the statistical analysis of control performances, the experiments are repeated
ten times for each controller. To compare the trajectory tracking performances,
a box-plot is presented in Figs. 5.10. It is possible to observe that on average
DI-IT2-FPD controller with PS-3 has the lowest MAE and standard deviation on

the tested trajectory when compared to other controllers.

Table 5.4 compares the characteristics of five controllers: standard PD, DI-T1-FPD
which uses the standard type-1 fuzzy logic process, DI-T1-FPD* which uses directly
FM in (5.8), DI-IT2-FPD which uses the standard interval type-2 fuzzy logic process
and DI-IT2-FPD* which uses directly FM in (5.12). The average computation time
for the traditional DI-T1-FPD and DI-IT2-FPD controllers is larger when compared
to that of PD. Since in conventional FLCs, first, the input is fuzzified, then, it goes
through the inference engine and, in the end, it is defuzzified. Moreover, in IT2-FLC,
the F'Ss have to be reduced from type-2 to type-1 before the defuzzification. However,
in DI-T1-FPD* and DI-IT2-FPD*, a direct FM is used which drastically reduces
the computation time. The design, implementation and tuning of PD controllers are
easy since it has only two parameters (k, and k4). On the other hand, DI-T1-FPD
controller has three parameters (k,, kq and k,) and DI-IT2-FPD controller has four
parameters (k,, kq, ko, and «). Finally, DI-IT2-FPD controller with PS-3 results in

the lowest MAE value computed from ten experiments.

0-5 T T T T T T
1
041 - ]
£ : T
ﬁ 0.3 ! ]
0.2 ]
=L
I p= -l
0.1

PS-1 PS-2 PS-3 PS-4 PS-5 PD
Controller

Figure 5.10: Box-plot of the tracking performances of six different controllers in
presence of wind.
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Table 5.4: Characteristics of different types of controllers.

Computation time | Number of | MAE with
Controller (average), [ms] parameters | wind [m)]
PD 0.008 2 0.314
DI-T1-FPD 1.356 3 0.282
DI-T1-FPD* 0.015
DI-IT2-FPD 1.759
4 0.238
DI-IT2-FPD* 0.017 |

From the experimental tests, it can be observed the following:

e For low values of «, DI-IT2-FPD controllers generate more aggressive control
inputs. Consequently, in a real physical system, it results in higher overshoot
but lower rising time. If the system is underdamped, it might result in

oscillatory behaviour which increases the settling time.

e For high values of o, DI-IT2-FPD controllers generate smoother control inputs.
Consequently, in a real physical system, it results in undershoot and higher
rising time but no oscillations occur. Nevertheless, since the control action
is not strong, in disturbed systems, the response will be strongly affected by

these disturbances causing more overshoot /undershoot.

e For moderate values of a;, DI-IT2-FPD controllers combines the characteristics

of two cases above.

To summarize, the behaviour of DI-IT2-FPD controllers with small values of «, i.e.,
0 < a < 1, is more aggressive around the desired position; while, the behaviour
of DI-IT2-FPD controllers with big values of «, i.e., 0 < a < 1, is less aggressive
around the desired position. These observations fully confirm the theoretical analysis
in Subsection 5.3.2. Therefore, o can be called the aggressiveness parameter. Lastly,
there is no universally good value of a which can satisfy all the cases. The optimal
value of a depends on the specific application, controlled system and working

environment.
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5.6 Conclusion

In this chapter, the main focus is to design, deploy and analyse DI-T1-FLC and
DI-IT2-FLC with various PSs. First of all, an alternative systematic approach to
explicitly derive the mathematical input-output relationships of DI-T1-FLC and
DI-IT2-FLC has been presented. These nonlinear closed-form relationships allowed
to verify some important characteristics of both DI-T1-FLC and DI-IT2-FLC, like
symmetry, continuity and monotonicity. Then, the design method for DI-IT2-FLC
has been presented where only one parameter of FOU has to be selected, i.e., aggres-
siveness parameter . By only modifying this parameter, DI-IT2-FLC controllers
can be designed in an easy manner to have more aggressive or smoother behaviour.
Besides, the developed controllers are computationally faster than the traditional
FLCs. To prove these theoretical claims, different DI-IT2-FPD controllers with
various PSs have been implemented in ROS. Then, the developed controllers have
been tested, in simulation and experimental case studies, for the way-points tracking
control of a quadcopter aircraft. Finally, it has been shown that the theoretical

claims and expectations match the results in the case studies.
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Chapter 6

Artificial Neural Network-Based

Control

BY definition, ANNs are computing models which progressively improve their
performance by learning from training examples [13]. Similarly to biological neural
networks, ANNs are built by many simple processing elements, called neurons,
which are interconnected by links, called synapses [14]. Hence, ANN learns from
the training samples by adjusting the synaptic weights of the connections between
neurons [15]. Moreover, ANNs reduce the need for feature engineering, which
is one of the most time-consuming tasks in machine learning, for the training
data [16]. Therefore, ANNs are ideal for situations that require approximating a
function that depends on a huge number of inputs, which nonlinearly connects to
the output [17]. Given the ability of ANNs to generalise knowledge from training

samples, an ANN-based controller is suitable to control nonlinear systems [18].

In this chapter, potentials of ANNs are explored under various operational conditions.
First, Section 6.1 revises the definition of ANN. Then, Sections 6.3 and 6.4 show
simulation and experimental results for fast and agile flight with a motor failure

case for a hexacopter UAV. Finally, the conclusions are drawn in Section 6.5.

Supplementary Material:

ROS package for the proposed ANN controllers: github.com/andriyukr/controllers.
Video for the experimental results: tiny.cc/fast_ ANN.

Video for the experimental results: tiny.cc/failure ANN.
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6.1 Mathematical Preliminaries

In a general single-hidden-layer ANN, the neurons are organised in input layer with
(N; + 1) neurons, hidden layer with (Ny + 1) neurons, and output layer with No
neurons. First, the input Z = {Z;,...,Zx,, 1} is fed into the hidden layer of ANN
wW11,1 Tt W1,1,Ny
through the network weights W; = : : e RWitH)xNu,
W1,N;+1,1 *° WI1,N;+1,Ny
Then, the output O = {Oy, ..., Oy, } is computed by applying the network weights
W 1,1 e W2,1,No
W, = : : e RWa+D)xNo t4 the output from the hidden
W Ny+1,1 *°+ W2 Ng+1,No
layer. The weights in ANN are updated following a set of rules during the learning

process.

Assumption 5. The network weights W; and W, are bounded, i.e.:

Wit <c
Wi Ol Sow, o

W2 (t)]loo < cw,

where cw, and cw, are some positive constants.

In the proposed approach, the input is Z = {e, é}, i.e., the position feedback error
and its time derivative; while the output is O = {uann}, i.e., the control signal,
as shown in Fig 6.1. Therefore, there are three input neurons (N; = 3) and one
output neuron (No = 1). The number of neurons in the hidden layer defines the
learning capabilities of ANN. The neural networks with a single hidden layer are
universal approximators [126], i.e., with a sufficient number of neurons, the network
can learn any measurable function [127]. Typically, a smaller number of neurons
may result in better generalisation in terms of different situations observed during
tests; while a large number of neurons provides better convergency [128]. Therefore,

an optimal number of neurons should be selected.
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Input Hidden
layer layer

Figure 6.1: Structure of the proposed artificial neural network organised in input
layer with two neurons, hidden layers with Ny + 1 neurons, and output layer
with one neuron.

Assumption 6. The two input signals e(¢) and é(t), and their respective time
derivatives é(t) and é(t) are bounded [129], i.e.:

le(t)] < ce
() <ee (6.2)
E(t)] < c

where c¢,, c; and ¢ are some positive constants.

The control signal from ANN is computed as a linear combination of each input:

NH Ng

A Hpwagn A

UANN = T’H = § Hjws 1, (6.3)
] ]:1

j=1
where H; is the normalized output from the j*® neuron in the hidden layer:

H= o

Ng ’
h=1 n
and

Ny
Hi=0¢ (Z Iiwl,i,j) ; (6.5)
i=1
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where j € {1,..., Ny} and ¢ is the scalar activation function. From Assumption 5

and (6.3), it is evident that uann(t) and wann(t) are also bounded signals [130]:

Vi, (6.6)

where ¢, and ¢, are some positive constants [131].

In the proposed control scheme, ANN works in parallel with a conventional PD
controller, as shown in Fig. 6.2. The PD controller ensures the stability of the
system in the initial phase of the learning process and acts as a feedback part of the
controller providing sufficient time for ANN to initialize its learning process [93].
Thus, ANN will learn the control parameters and take over the control of the system.
With its adaptive learning rates, ANN is very fast to learn and can instantaneously

contribute to better performance, i.e., trajectory tracking accuracy.

Remark 6.1. One may note from Fig. 6.2 that the control output u is one-
dimensional. The same control structure is used to generate all the four control
signals described in (2.37), but only one is shown here for the sake of simplicity and

to avoid repetition.
The overall control input u to the controlled system is defined by:

U = Upp — UANN, (67)

where upp and uany are the control signals generated by PD and ANN controllers,

respectively. The general PD control law is described as follows:
upp = k‘pe + kdé, (68)

where k, and k4 are proportional and derivative gains, respectively.

N
U
LT ANN
e d é Y u
dt
_|_
PD
Upp

Figure 6.2: Control scheme: ANN in parallel with PD controller.
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6.2 Sliding Mode Control-Based Learning

For the learning process of ANN, an SMC-based parameter adaptation scheme
is used. The SMC framework is designed by selecting a suitable sliding manifold
that will ensure the desired system dynamics. Moreover, to fulfil the sliding mode
constraints/conditions, a dynamic feedback adaptation mechanism or, in other

words, an online learning algorithm for ANN parameters has to be designed.

The difference between the measured output of the system and the output of the
ANN can be defined as a time-varying sliding surface [132]. A time-varying sliding
surface S can describe the zero value of the learning error coordinate upp(t) by
using the theory of SMC [133]:

S(t) = UPD(t) = UANN<t) + U(t) = 0. (69)

Using the condition in (6.9), ANN is trained to obtain the desired response such
that it becomes a nonlinear regulator that assists the conventional PD controller.

Thus, the sliding surface for the nonlinear system under control is [134]:

S(e) = (%4—)\) e=¢€+ e, (6.10)
where A > 0 is a constant which determines the slope of the sliding surface. A
sliding motion will occur on the sliding manifold S(¢) = upp(t) = 0 after a finite
time t5,, if the condition S(¢)S(t) = upp(t)upp(t) < 0 is satisfied for all t such
that [t,t,) C (—o0,t;) in some nontrivial semi-open subinterval of time [135].
Consequently, uann(t) is constrained to perfectly follow the desired output signal
u(t) for all ¢ > t,. The time instant ¢, is the hitting time for the learning error
upp(t) = 0. For an arbitrary initial condition upp(0), upp(t) will eventually converge

to a small neighbourhood of zero during a finite time t;,. Therefore, the adaptation

laws for the parameters of ANN are given as follows:

. _ H; . )
Wy 1 = —Q sign(u vViedl,...,N
& = v|upp| — yra,

where o > 0 is an adaptive learning rate, v > 0 and v > 0 are learning parameter.

The pseudo-code of the ANN training is presented in Algorithm 1.
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Algorithm 1: Online adaptation of ANN.
Input: e, é, upp

Output: uany

Data: Ny, ag, v, v

Result: ANN controls the system online
begin

ANN « ConstructNetworkLayers(2, Ny, 1)
W, < InitializeWeights()

W,  InitializeWeights|()

o <— O

repeat

Get e, € and upp

Hj< ¢ (sz‘vzllziwl,i,j> Vie{l,...,Ny}
ﬁszﬁTj% Vie{l,...,Nu}

h=1

Waj1 ¢ — NZng sign(upp) Vj€{l,...,Ny}
h=1 h

& < v|upp| — yra

uANN = D0 Hyws 5
Send uanN to the system
until Stop

end

Remark 6.2. In the adaptation laws in (6.11), the learning rate « is variable and
its value evolves during the learning process. This adaptation law allows choosing a

small initial value for o which, consequently, grows during the training phase.

Theorem 6.2.1 (Stability of ANN). If the adaptation laws for the parameters are
chosen as in (6.11), then learning error upp will converge to a small neighbourhood

of zero in a finite time ¢, for any arbitrary initial condition.

Proof. Let’s consider the following Lyapunov function:

1 1 )
V = —upp + —(a —a*)

6.12
5 > (6.12)

Hence, V' > 0 for (upp # 0) V (a —a* # 0) and V = 0 for (upp = 0) A (o —a* = 0).

Taking the time derivative of V"

. 1
V = uPdeD + ;(O& - oz*)d = UPD(ﬂ + I'LANN> + ;(Oé - Oé*)d, (613)
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in which
Ng )
uANN = Z (%jw27j71 + Hj’lj)g,j,l) . (614)
j=1
By replacing (6.14) into (6.13):
Ny Ny 1
V= Upp (u + ZH]’U)QJJ + Z/ijzj’l) + ;(Oz — Oé*)éé. (615)
j=1 j=1
Considering the fact that Z;V:Hl Hi=1 = ZjVZHI ,If[j =0:
Ny 1
V = upp (u +) ijg,jJ) + ;(oz — a*)d. (6.16)
j=1
By considering the adaptation laws of Wy in (6.11):
- . : 1 . -
V' = upp (1 — asign(upp)) + ;(a —a")a
1 :
= |upp|By — a|upp| + ;(Oz —a")a (6.17)
1 :
= |upp| By — (o — o) |upp| — a*|upp| + ;(a —a’)a.
By considering the adaptation laws of « in (6.11):
: 1 \* 1
V = |upp| By — a*|upp| — v (a — 504*) + ZVQ*Q' (6.18)
Assuming B; < %a*, the following inequality is obtained:
’ 1 * 1 *2
V< —5@ lupp| + yidal (6.19)

which implies that the Lyapunov function decreases until upp < iya* and upp

remains bounded. Furthermore, v is a design parameter and it is possible to select

this value as small as desired.

]
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6.3 Simulation Results

At first, the controller is tested in simulation to determine the ANN’s meta-
parameters, like learning rate and number of neurons in the hidden layer. The
Gazebo simulation environment is used to simulate and model the flying UAV,
including a motor failure, because of its powerful and robust physics engine. A
thorough analysis of the different number of neurons in the hidden layer is done to
observe its effects on computation times and learning performance. The compu-
tation time is calculated for the different number of neurons, in a simple circular
trajectory of 5m radius at reference speed of 1m/s, as shown in Table 6.1. Note
that the time given in the table is the average computation time taken to run one
loop of the ANN controller. It is evident from the study that no significant change
is observed in terms of tracking improvement with the increase in the number of

neurons, albeit the computation time multiplies.

As aforementioned, ANN begins to learn online from a pre-set learning rate, each
time it is initialized and applies a correction to the model-based techniques. This
allows keeping the original benefits of the control, including stability properties,
while the proposed algorithm adds effort to improve performance metrics. Thus,
any particular data set for a scenario is not fed to the controller to learn any specific
trajectory, rather the controller is designed to perform better in every arbitrary
condition. The main goal for the ANN-assisted controller is to learn in a very
short time and perform better than the commonly used conventional controllers.
Moreover, implementing a simple neural network with just a single hidden layer

with few neurons is not sufficient to learn the complex system dynamics of UAV.

Table 6.1: Comparison of computation times and mean Fuclidean error for
different number of neurons in hidden layer.

Number of neurons 3 9 20 50 100 500

Computation time, [ms] 0.092 | 0.127 [ 0.143 | 0.245 | 0.427 | 2.57

Mean Euclidean error, [ms] | 1.55 | 1.52 | 1.56 | 1.55 | 1.58 | 1.69
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6.4 Experimental Results

To validate the performance of the proposed controller, comprehensive real-time
tests are conducted on a custom-made coaxial hexacopter, depicted in Fig. 2.1b.
An additional motor failure relay is added to UAV, which helps to trigger the
motor failure on-demand from the radio transmitter. The tests are performed in an
outdoor environment with the use of the real-time kinematic (RTK)-GPS, which
provides the z, y and z position information with an accuracy of approximately
5 — 20cm at 5Hz. It is to be noted that the experiments were conducted with

average wind gusts of bm/s.

The onboard computer running all the codes in C+4 on ROS is a low-cost and
low-power Odroid XU4 — thus, allowing the system to be autonomous. The main
constraint being the computation power available on the onboard computer, desirable
three sets of neurons are selected from hardware-in-the-loop simulation to ensure
that sensible computation is utilised in real-time. The position information from
RTK-GPS together with the data from the inertial measurement unit is fed into
the local position estimator which estimates the pose of UAV. This information is
used by the controller to compute the control signal and provide it to UAV through

a HGHz wireless network.

The goal is to achieve a great performance using the proposed controller in chal-
lenging and previously unknown trajectories, for which a perfectly tuned set of
PID gains can not be determined. The ANN-assisted conservative PD controller
is employed to perform trajectory tracking. The advantage is that since the ANN
starts learning online each time from scratch when initialized, it converges faster
and better when compared to other controllers as shown in the results. The results
of the ANN controller are compared with two widely used position controllers. One
is the position controller of the Pixhawk autopilot stack [136, 137|, referred as
PIDpcu; while the other is a standard PID position controller, referred as PID s,
which sends attitude-setpoints — roll, pitch, and yaw angles — and thrust commands.
The same experimental scenario is repeated with a different controller each time.
Note that all the iterations with different controllers were carried out in similar

outdoor conditions.



92 6.4. Experimental Results

6.4.1 Fast and Agile Flight

A trajectory with two segments — zig-zag and straight line — is chosen to make UAV
experience both agile and fast manoeuvres at high speeds. In the first segment
of the trajectory, UAV follows a zig-zag path for 55m along z-axis and a periodic
change of £5m along y-axis at a target speed of 5m/s. Then, in the second segment,

UAV follows a straight-line path at the target speed of 15m/s for another 70m.

Table 6.2 gives a brief overview of the experiments carried out for the different
controllers numerous times on various trajectories. In particular, a zig-zag path at
high speed and a simple circular trajectory at nominal speed are traced. The zig-zag
path is a pattern stretching 30m along z-axis and £+5m along y-axis, while the
latter is a circle of 2m radius circling three times. The experiments are performed
for each of the three controllers in discussion and are repeated twice for the sake of
repeatability. An overall improvement of the proposed ANN-based controller can

be observed and that its performance is independent on the chosen trajectory.

The results plotted in Fig. 6.3 show the trajectory tracking of the UAV in 3D space
over time. The wind gusts and the high speeds of the UAV exert huge stresses
on the rotors, thus slight deviations from the trajectory are inevitable. The slight
deviation along z-axis towards the end of the trajectoryis because of the tilting
thrust vector of the UAV, reducing the vertical component of thrust compared to
the weight of the UAV. As seen from the top view of the trajectory in Fig. 6.4, the
maximum deviation from the trajectory in case of ANN is about 1m and 5m in any
direction for the zig-zag and straight-line parts, respectively. However, for PIDgcy
and PID, it is about 2.5m and 2m for zig-zag and 13m and 9m for straight-line
parts, respectively. Moreover, even at high speeds and very sharp turns, ANN

tracks the trajectory to the closest point on the bends.

Table 6.2: Statistical comparison of three controllers.

Trajectory | Controller [ Mean Euc. error, m| | MAE, [m] o
PIDgcyu 1.331 5.378 2.178

Zig-zag PID,pos 1.022 4942 | 1.834
ANN-PD 0.861 4.550 1.721
PIDpcu 1.147 1.776 0.396

Circle PID0s 1.042 1.617 0.542
ANN-PD 0.511 0.757 0.299
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Figure 6.3: Real-time trajectory tracking of the UAV.
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Figure 6.4: Top view and tracking error of the considered controllers.

A common parameter usually calculated as a performance comparison metric is the

Euclidean error in (3.12). Specifically in the trajectory tracking problem, using the
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Euclidean error alone can penalize the algorithm because the delay in following
the trajectory is taken into account and not how accurately it is following the
command [138]. Thus, the overall tracking error in z, y, and z axes, plotted
in Fig. 6.4, shows how closely or accurately the actual path is followed despite
such tight constraints. The improvement achieved by ANN in terms of tracking
error is 63% and 60% compared to PIDgcy and PID,, respectively. Even on the
straight-line segment of the trajectory, it converges to the actual trajectory despite
the initial deviation. Considering the high speeds and attitude angles attained
during the entire 155m long trajectory, the error for ANN is significantly smaller.
At the end of the straight path, when UAV is travelling close to 18m/s, it has to
come to a halt, which physically it is not possible to stop in an instant — thus,
the overshoot at the end and then UAV converges to hover states. The ground
speed achieved for the different controllers is compared in Fig. 6.5. As shown in
the acceleration plot in Fig. 6.5, ANN is the fastest to accelerate and complete
the trajectory. The ANN-assisted controller is able to maintain stable flight while
reaching peak velocities of 18m/s and attitude angles of 45° during the trajectory.
Highest average speeds are observed for ANN during the zig-zag path as ANN

follows the trajectory to minimize the tracking error. The control output signals of
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Figure 6.5: Ground speed and acceleration of the considered controllers.
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Figure 6.6: Control signals of ANN for x, y and z axes.

the ANN controller working in parallel with PD controller are presented in Fig. 6.6

for the z, y and z axes.

To summarise, it is shown that ANN accelerates faster to follow the desired trajectory
and results in the best trajectory tracking among the three considered controllers.
The learning capability of ANN helps to minimize the tracking error over time and
provide superior performance. The mean absolute tracking error for each of the

three controllers along with the maximum speed and acceleration attained are given
in Table 6.3.

Table 6.3: MAE, maximum speed and maximum acceleration achieved for the
considered controllers.

Controller | MAE, [m] | Max. speed, [m/s] | Max. acceleration, [m/s?]
PIDgcy 3.749 17.8 5.222
PID,0s 3.429 20.0 5.373
ANN-PD 1.356 18.3 8.065
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6.4.2 Motor Failure

Safe operation of UAVs has a high priority as most of them operate in human
populated areas [139]. A long straight manoeuvre is chosen to track the motion
at high-speeds reaching 20m/s for the fast flight of UAV. Then, UAV starts the
mapping trajectory with 3m x 5m dimensions, after reaching the destination area,
at a speed of 2m/s. During this part of the trajectory, UAV experiences a motor

failure and, yet, continues to complete the trajectory and land safely at the end.

The plot in Fig. 6.7 shows the trajectory tracking of the UAV in 3-dimensional space
over time. The plots are shaded in two colours, the initial green phase shows the
motors are running properly and the red phase starting at 21s mark shows the flight
with motor failure. The motor failure is triggered when the UAV is following the
mapping part of the trajectory. A slight change in z axis seen from the plot is the
initial drop in height due to the instantaneous loss of thrust. The ANN controller
learns it as a disturbance and compensates for the loss. The integral term of the
PID controller also tries to minimize the steady-state error but ANN-PD is more
effective. The UAV lands at the end with the motor failure state and a huge lag in
the PIDgcy’s capability to land can be seen. On the other hand, the ANN-based
controller and PID,s are more effective at landing compared to the former. It is

to be noted that the landing height is not exactly Om, but slightly below that, as

1 1 1 1 1

25 30 35 40 45

m

0 5 10 15 20 25 30 35 40 45
Time [s]

5 Reference
- I I

Figure 6.7: Position tracking performance of various controllers
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the field where the experiments are carried out is not an even surface — thus, the

landing point is below the datum of the take-off point.

The high speeds, experiencing motor failure, and the wind gusts exert tremendous
stresses on the rotors and the UAV inertial dynamics, and thus small deviations from
the trajectory are inevitable. The overview of the trajectory as seen from the top is
depicted in Fig. 6.8. It can be noted that the PID,,s has more deviations from the
actual path and the ANN controller follows the sharp bends more effectively, thus
minimizing the overall error. In the trajectory tracking problem, the Euclidean error
is usually calculated to determine the controller’s performance, but it may penalize
the algorithm as it takes into account the time delay in following the trajectory and
not how accurately it is following [140]. Thus, the overall tracking error in the z,
y, and z axes showing the UAV’s capability of following the actual path is shown
in Fig. 6.9. The ANN controller is able to achieve an overall improvement of 41%
and 55% when compared to the PIDpcy and PID,,, respectively, for the entire
stretch of trajectory. Keeping in mind the high speeds and the high attitude angles

achieved during the trajectory, the error for ANN is quite small.

The ground speed of the UAV, during the trajectory, for the various considered
controllers is shown in Fig. 6.10. The ANN accelerates faster and thus tracks the
trajectory better than the other two controllers. The acceleration plot is also shown
in Fig. 6.10. The UAV follows the mapping part of the trajectory at a speed of
2m/s with a motor failure. The ANN controller working in parallel with a PD
controller is able to stabilize the flight during this scenario and still able to follow
the desired path closely. The UAV lands at the end of the trajectory at a defined

location.

The control output of the ANN controller for the z, y, and z axes is shown in

0F X -
— 5L 4
£
> .10 1 i
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Figure 6.8: Top view comparison of various controllers
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Figure 6.10: Ground speed and acceleration of different controllers

Fig. 6.11. Note the sudden increase in the control output of z axis as the motor is
failed at the instant of 21s. The performance characteristics of the controllers are

given in Table 6.4.
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Figure 6.11: Control output of ANN controller for z, y, and z axes

6.5 Conclusion

In this chapter, an ANN-assisted PD controller is proposed for the UAV’s control
in various challenging conditions. A fast flight manoeuvre at speeds of 18m/s is
performed to show the superior performance of the proposed controller. While
performing a predefined task, the UAV experiences a single motor failure, and the
proposed controller handles the failure ensuring the safety of the mission as well
as the UAV. The model-free nature of the controller helps in accurate trajectory
tracking even for high speed and agile manoeuvres. The advantage of the proposed
controller is that it does not need a well-tuned set of PD gains as it learns online
and improves the performance metrics while following the trajectory. Moreover, the
proposed controller is computationally cheap to be implemented on the onboard
computer. The real-time experiments show that for all the phases of the considered

scenario the proposed controller outperforms the conventional PID controllers.

Table 6.4: MAE, maximum speed and maximum acceleration achieved for the
considered controllers.

Controller | MAE, [m] | Max. speed, [m/s| | Max. acceleration, [m/s?|
PIDpcu 5.564 18.81 5.50
PID,0s 6.653 19.86 9.13
ANN-PD 4.288 19.49 7.76







Chapter 7

Deep Neural Network-Based

Control

THOUGH ANN are able to generalise knowledge from training samples, common
single-hidden-layer ANNs can approximate effectively only simple nonlinear func-
tions, while real-world systems are frequently highly nonlinear [141]. On the other
hand, DNNs which are distinguished from the more commonplace single-hidden-
layer ANNs by their depth that is the number of layers through which data must
pass in a multi-step process [20]. Thus, DNNs can approximate non-linear functions
with an exponentially lower number of training parameters and higher sample com-
plexity when compared to ANNs [22]. Therefore, DNNs propose a novel approach
to enhance the control strategies for nonlinear systems [23]. After training the DNN
module on collected flight samples, it can be used in real-time to provide the control

signal [24].

In this chapter, the potentials of DNNs are explored under various operational
conditions. First, Section 7.1 revises the definition of DNN. Next, Section 7.2 pro-
vides theoretical results related to the transfer learning problem. Then, Sections 7.3
and 7.4 show simulation and experimental results for linear systems and two types

of quadrotor UAVs, respectively. Finally, the conclusions are drawn in Section 7.5.

Supplementary Material:
Video for the experimental results: tiny.cc/DNN.
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7.1 Mathematical Preliminaries

In a general DNN, the neurons are organised in input layer with N; neurons,
Ny, hidden layers with Ny, h € {1,..., Ny}, neurons in each layer, and output
layer with N neurons, as shown in Fig 7.1. First, the input Z = {Z,...,Zy, } is
forwarded to the first hidden layer of the network through the network weights

W11t WL1(Nga-1)
W, = : : € RV*Wu1—1) - Commonly, the hidden layers
WiNp1 0 WILNG(Nga-1)
of DNN are systematised in a fully connected structure with the network weights
wh7171 T wh’li(NH,hil)
W, = : : € RVun-1xWNun=b) "p c {2 N}
Wh,Ng 1,1 " Wh Ny 1,(Ngn—1)

Finally, the output O = {O4,...,On,} is computed by using the network weights

WNp+11,1 0 WNL 411N
Wy, 41 = : : € RVNuNL*No to the output from

WNL+1,Ngn; 1 " WNL4+1,Ny N, ,No
the last hidden layer. The weights in DNN are updated following a set of rules

during the learning process.

Assumption 7. The network weights W;, i € {1,..., Ny + 1}, are bounded, i.e.:
IWi(E)|loo <ew,, t€{l,...,Np+1} Vk, (7.1)

where cw,, @ € {1,..., N + 1}, are some positive constants.

Input

Figure 7.1: Structure of DNN organised in input layer with N; neurons, Ny,
fully-connected hidden layers with Ng 5, h € {1,..., N1}, neurons in each layer,
and output layer with Np neurons.
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7.2 'Transfer Learning

Due to the cost associated with data collection and training, approaches have been
proposed to transfer knowledge between robots and thereby increase the efficiency
of robot learning. These transferred learning approaches are expected to speed
up the training of the target robot and enhance its performance in untrained
tasks [142]. The knowledge transfer method that allows the DNN module trained
on a source robot system to enhance the impromptu tracking performance of a
target robot system that has different dynamics can be implemented. The source
and target robot systems can be considered as closed-loop systems whose dynamics

are represented by (2.1).

Remark 7.1. Assumptions 1, 2 and 3 are necessary for safe operations and for

applying the DNN inverse learning [102].
Assumption 8. The source and target systems have the same relative degree r.

Remark 7.2. Assumption 8 holds, for instance, if the two robots have similar

structures but different parameters, e.g., mass and dimension.

The DNN module represents the inverse dynamics of a source system and is
previously trained offline with a sufficiently rich dataset. During the testing phase,
the DNN module is leveraged to enhance the tracking performance of a target system
that shares some dynamic similarities with the source system. The online learning
module (trained based on small sets of real-time data) further adjusts the reference
generated by the DNN module to allow the target system to achieve high-accuracy
tracking on arbitrary trajectories from the first attempt, i.e., impromptu tracking.

The proposed control architecture is depicted in Fig. 7.2.

Definition 7.2.1. Let u; € RY be the reference from the DNN module trained on

the source system, and us € R be the reference from the online learning module.

The overall reference to the target baseline system u(k) € R is given by

u(k) = ui(k) + ua(k). (7.2)

The online learning approach is considered that adapts the reference of the DNN

module u, (k) based on the tracking error. In particular, the reference us(k) can be
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Baseline v y
Svst I
S DI Controller ys' e ' .
.................................................... TS 5

»| Online
Learning

Figure 7.2: Block diagram of the DNN-enhanced control architecture with online
learning module (solid lines represent calculated quantities, dashed lines represent
measured quantities, dotted lines represent estimated quantities).

approximated by
uy(k) = aé(k +r), (7.3)

where « is an adaptation gain, and €(k + r) is a prediction of the tracking error r

time steps ahead.

Let consider a nonlinear source system, on which the DNN module is trained,

similarly as in (2.5):

y(k +r) = Fs(x(k)) + Gs(x(k))u(k), (7.4)
where
Fs(x(k)) = hs (f5(x(k))) (7.5)
and 5
Gs(x(k)) = Fulh) [hs (f5" (fs(x(k)) + gs(x(k))u(k)))] (7.6)

are decoupling functions, in which fg : RYs — RNs gg : RYs — RNs x RV and
hg : RNs — RNo are source system functions. In addition to the source system, let

consider a nonlinear target system similarly as in (2.5):

y(k+r) = Fr(x(k)) + Gr(x(k))u(k), (7.7)
where
Fr(x(k)) = hr (fr(x(k))) (7.8)
and 5
Gr(x(k)) = Ju(k) [hr (77 (fr(x(k)) + gr(x(k)u(k)))] (7.9)
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are decoupling functions, in which fr : RYs — R¥s gp : R¥s — RNs x RV and
hr : RNs — RNo are target system functions. As discussed in [102], the DNN

module approximates
(k) = [Gs(x(k)] ™" (y"(k +r) — Fs(x(k))). (7.10)

By substituting (7.2) and (7.10) into (7.8), one can see that the ideal reference

uy (k) for achieving exact tracking is

uy (k) = e’ (k+r), (7.11)
where
o = [Gr(x(k))] ™ (7.12)
and
e (k+r)=y"(k+r)— Fpr(x(k)) — Gr(x(k))ui(k). (7.13)

Remark 7.3. To achieve exact tracking, the online learning module should predict

the tracking error of the target system that would result from applying u; (k).

The error prediction in (7.13) depends on the current state x(k), the reference
u; (k) from the DNN module, and the future desired output y*(k + r). When
the dynamics of the source and the target systems are not known, one may use

supervised learning to train a model online to approximate (7.13).

Remark 7.4. For training an online model to approximate (7.13), at each time step
k, one may construct a dataset with paired inputs Zo = {x(h — r),u(h —r),y*(h)}
and outputs Oy = {y*(h) — y(h)} over the past Np time steps h € {k — Np, ..., k},
where Np is the size of the dataset. Then, the error €(k 4+ r) can be predicted using
the online model with input Z, = {x(k),ui(k),y*(k +r)}.

Given the predicted error €(k + r), another component to be determined for
computing uy(k) is the gain a. With an online model F (x(k),uy(k),y*(k + 7:)1)
approximating (7.13), it can be shown that a* can be obtained from & = — [—] )
In practice, due to noise in the systems, the online estimation of a* can be non-

trivial.
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7.2.1 System Similarity

Definition 7.2.2. Two systems are similar, if at any given state x(k), the applica-

tion of an input u(k) to the systems results in similar outputs y(k + r) [143].

For the similarity discussion, let assume source and target systems are linearised

(or linear) to simplify the analysis:

x(k+1) = Ax(k)+ Bu(k)
y (k) = Cx(k),

(7.14)

where A € RVs*Ns B ¢ RVs*N1 and C € RYo*Ns are constant system matrices.

It can be shown that the input and output of system (7.14) are related by
y(k+1r) = Ax(k) + Bu(k), (7.15)
where 7 is the relative degree of system (7.14),
A=CA" (7.16)
and

B=CA'B. (7.17)

From (7.15), the input-output relationship is fully characterized by A and B, which
can be thought as the state-to-output gain vector and the input-to-output gain,

respectively.

Definition 7.2.3. If {Ag, Bs} and { Ay, Br} are gain matrices defined as in (7.16)
and (7.17) related to the source and target systems, respectively, the similarity

factor S between the source and target systems can be defined as:

S, b
s=1"= B (7.18)
Sz ./4 - B_?;AS

The terms S; and Sy characterize the differences in the input-to-output gain and
state-to-output gain vector between the source and target systems, respectively.
Note that S = 0, iff A7 = Ag and By = Bg, i.e., the state-to-output and input-to-

output gains of two systems are identical.
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Assumption 9. The output of the offline DNN wu; (k) corresponds to the inverse

of the source system

1

111(]{3) = B_S

(y"(k+r)—Asx(k)), (7.19)

where Ag and Bg are the gains of the source system, and x(k) and y*(k + r) are

the state and desired output of the target system.

Assumption 10. The error in the prediction can be bounded:

A=|e(k+r)—elk+r)|

(7.20)
< Billy™ (k + )|l + Ballx(K) || + Bs,

where (1, 2, and 3 are some positive constants.

In addition, by Assumption 3 the target system is input-to-state stable. It can be
shown that the state of system (7.14) can be bounded as follows:

[%[loo < Lal[ulleo + Lallxoll (7.21)

L, and L, are some positive constants.

Theorem 7.2.1 (Stability of DNN). Consider a target system represented by (7.14)
and the control architecture in Fig. 7.2, where the reference of the online learning
module uy(k) has the form of (7.3). Under Assumptions 3, 4, 9, and 10, the overall
system is bounded-input bounded-state (BIBS) stable if

P

laf ([[S2]| + B2) < I (7.22)
1

A

where 54 =1 —L1 B_S

Proof. At time step k, the output of the online learning module is uy (k) = aé(k+7r),
where « is a constant gain and €(k+r) is the predicted tracking error. The adjusted
reference u(k) sent to the target baseline system is u(k) = u; (k) + a€(k +r), where
u; (k) is the output of the offline DNN module. By Assumptions 9 and 10, u(k) can

be written as

u(k) = Big (y'(k+r)— Asx(k)) +a(e"(k+7r)—A). (7.23)
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For a target system represented by (7.14), e*(k + r) in (7.13) can be written as

e (k+r)=y"(k+r)— Arx(k) — Brui(k)

By (7.24)
=y (k4r) = Arx(k) = 5= (" (k +1) = Asx(k)).

By substituting the expression of e*(k + r) into (7.23),

u(k) = (Bis + 0451) yi(k+r)— (2—5 + aSQ) x(k) — aA. (7.25)

Moreover, by Assumptions 3 and 10, |[x|l and [y*||c can be related by the

following inequality:

1 k
I < 24 (| 5 + ettt + ilal ) 1y
S

A (7.26)
Lo ({52 + altset + et Il + il + alial
From (7.26), if
A
=1 <HB—S + [af[[S2|| + B2|a|> >0, (7.27)
s
or equivalently 5
| ([S2]] + B2) < L_4’ (7.28)
1
then the state of the system can be bounded as follows:
L (|| ]| + telSll + Bilat) 1yl + Lifslal + Lallxol
[x[lo0 < (7.29)

1—L1<’

By Assumption 4, y* is bounded, and hence ||y*||» is also bounded, then the system
state is bounded, and the overall system is BIBS stable. [

As
Bs

+ lall1S: ] + Bolal)



Chapter 7. Deep Neural Network-Based Control 109

7.3 Simulation Results

The source system is selected as:

0 1 0
x(k+1) = x(k) + | | u(k)
~0.15 0.8 1 (7.30)

y(k) = [—0.2 1} x(k).

while the target system is selected as:

0 1 0
x(k+1) = x(k) + u(k)
—0.24 1 1 (7.31)

y(k) = [—0.1 1] x(k).

A DNN module can be designed to enable the system to achieve exact tracking on
untrained trajectories. The offline DNN module is trained to control the source
system in (7.30) but is used to enhance the tracking performance of the target
system in (7.31).

Remark 7.5. The source system in (7.30) and the target system in (7.31) are
minimum phase and have relative degrees r = 1. The source system has two poles
at {0.3,0.5} and a zero at 0.2; while the target system has two poles at {0.4,0.6}
and a zero at 0.1. When implementing the learning modules, the controlled systems
are considered to be black boxes for which only input-output data and some basic

properties, e.g., relative degree, are known.

The offline inverse module is trained on a source system, from which abundant
data has been collected. The collected data can often be compactly represented
by parametric regression techniques. For the source system (7.30), the DNN
module is trained and used to enhance the target system (7.31) with the proposed
online learning approach. The DNN module of the source system is a three-layers
feedforward network with 20 hyperbolic tangent neurons in each hidden layer.
The input and output of the DNN module are Z; = {z1(k), zo(k),y*(k + 1)}
and O; = {ui(k)}. The training dataset is constructed from the source system’s
response on 25 sinusoidal trajectories with different combinations of frequencies

and amplitudes.
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The online error prediction module is a local model trained on a small dataset
constructed from the latest observations of the target system. The objective of
incorporating the online module is to achieve fast adaptation to the dynamic
differences between the source and target systems. In the simulation, a Gaussian
process (GP) regression model is utilized for learning the error prediction module
online. Based on Remark 7.4, the input and output of the online module are selected
to be Zy = {z1(k), x2(k),u1 (k),y*(k+1)} and Oy = {é(k+1)}, respectively. At each
time step k, a fixed-sized training dataset is built based on the latest 15 observations;
in particular, the input and output are Zy = {z1(p—1), z2(p—1),u(p—1),y*(p)} and
Oy ={y*(p) —y(p)} for p € {k — 15,...,k}, respectivelly. For the simulation, the
GP model uses the squared-exponential kernel K(&,¢') = o2 exp (—% > (5;—251)2)
and polynomial explicit basis functions {1, &;, £?}, where & denotes the input t(l) the
module and &; denotes the i-th component of £, [; is the length scale associated
with the input dimension &;, and 0% is the prior variance [144]. The length scales [;
are identical for all input dimensions in the simulation. The gain o* is estimated
based on the online error prediction module as & = — [g—i} _1, where F' denotes

the function represented by the GP regression model.

7.3.1 Discussion

The performances of the proposed approach are tested on the target systems
in (7.31). The desired test trajectory is:
y*(t) = sin (%t) + cos (%t) -1, (7.32)

where t = 1.5 x 1073k is the continuous-time variable. This test trajectory is not

previously used in the training of the offline learning module.

Fig. 7.3 compares the predicted error from the online module and the analytical
error prediction of the target system computed based on (7.13). It can be seen that
the online module designed based on Remark 7.4 is able to accurately predict the
error of the target system that would result from applying the reference u; alone.
On the test trajectory, RMSE of the online module prediction is approximately
2.9 x 107",
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Figure 7.3: Plot of the error prediction from the online learning module.

Fig. 7.4 shows the outputs of the target system when the baseline controller is
applied (grey curve), the baseline system is enhanced by the offline module alone
(green curve), and the baseline system is enhanced by both the online and the offline
modules (blue curve). As compared to the baseline system, the offline module alone
reduces the tracking RMSE of the target system from 3.97 to 0.44. The online
module further reduces the tracking RMSE to 9 x 1075, Applying the offline and the
online learning modules jointly allows the target system to achieve approximately
exact tracking on a test trajectory that is not seen by the source or the target

system a-priori.
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Figure 7.4: Output of the target system controlled by three different approaches.
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7.4 Experimental Results

With impromptu tracking of hand-drawn trajectories as the benchmark prob-
lem [145], the proposed online learning approach is used for transferring the DNN
module trained on a source quadrotor system — Parrot ARDrone 2.0 — to a target
quadrotor system — Parrot Bebop 2. With the ARDrone as the testing platform, it
is shown that a DNN module trained offline can effectively enhance the impromptu
tracking performance of the quadrotor on arbitrary hand-drawn trajectories. The
DNN module trained on ARDrone is leveraged to enhance the impromptu tracking
performance of Bebop and further apply the proposed online learning approach to
achieve high-accuracy tracking. The offboard position controller receives the refer-
ence position p, and reference velocity v,., and computes roll and pitch commands

¢ and 0, yaw rate command wy, and z-velocity command v,.

A DNN module is trained offline to approximate the inverse of the ARDrone
baseline system dynamics. The input and output of the DNN module are Z; =
{o(k +4) — 2(k),y"(k +4) — y(k),2*(k + 3) — 2(k),v;(k + 3) — v (k),v;(k +
3) — vy (k),vi(k +2) —v:(k), 0(k),w(k)} and O1 = {pr(k) — p(k), v.(k) — v(k)},
respectively. The DNN module consists of fully-connected feedforward networks
with 4 hidden layers of 128 rectified linear units. The training dataset of the
DNN module is constructed from the ARDrone baseline system response on a 400s
3-dimensional sinusoidal trajectory. At a sampling rate of THz, approximately 2’800
pairs of data points are collected for training. For 30 hand-drawn test trajectories,
this offline DNN module is able to reduce the impromptu tracking error of the

ARDrone baseline system by 43% on average.

Based on Remark 7.4, the input and output of the online learning module are Z, =
[D(k), V(k), (k) w(k), Py (k), v, (k), 2" (k +4), " (k + 4), 2* (k + 3), v3(k +3), v (k +
3),vi(k+2)} and Oy = {Z(k+4),9(k+4),2(k+3),0.(k+3), 0.(k +3),0.(k +2)},
respectively. In the experiment, to make the online learning more efficient, instead of
predicting the position and velocity errors directly, a GP model has been trained to
predict the position of UAV, i.e., p(k+7r) = [z(k+4),y(k+4), z2(k + 3)]. Then, the
predicted error is computed by subtracting the predicted position from future desired
position, i.e., p*(k+7r) —p(k+r), where p*(k+7) = [z*(k+4),y" (k+4), 2*(k + 3)].
The predicted position errors are used to compute the corrections for the position

components; while the velocity reference corrections are numerically approximated
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with a first-order finite difference scheme. Due to the measurement noise in
the experiment, instead of estimating the parameter a online, constant gains

a = (5,5,0.5) for the z, y, and z axes are used.

7.4.1 Discussion

Figs. 7.5 and 7.6 compares the tracking performance of three control strategies on
Bebop on one of the test hand-drawn trajectories. When comparing the performance
of Bebop system enhanced by ARDrone DNN (green curve) and the performance
of Bebop baseline system (grey curve), ARDrone DNN reduces the delay and the
amplitude errors in Bebop tracking response. Along this particular trajectory, the
DNN module alone reduces the tracking RMSE of Bebop from approximately 0.42m
to 0.26m. When further comparing with the performance of the DNN-enhanced
system with the addition of the online learning module (blue curve), the tracking
of Bebop, especially in the x-direction, is brought close to the desired trajectory.
With the online learning module, the tracking RMSE is reduced to approximately
0.14m. When the online learning module is applied, there are small overshoots
at the locations with larger curvatures. The overshoots may be reduced with the

online tuning of the hyperparameters of GP and online estimations of a.

Fig. 7.7 summarises the performance errors of three control strategies on 10 hand-
drawn trajectories. When compared with Bebop baseline system performance (grey
bars), the direct application of the transferred DNN module (green bars) reduces
the tracking RMSE of Bebop baseline system by an average of 46%. With the
addition of the online learning module (blue bars), an average of 74% tracking RMSE

2 T T
e ---- Desired
- Bebop Baseline System

_15r ——w/ DNN i
3 —— w/ DNN & Online Module
N

N P e i

O 5 | | | | | | | |

Figure 7.5: Trajectory tracking of the target system in the zz-plane by three
control strategies.
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Figure 7.6: Position trajectories of the target system controlled by three control
strategies.

reduction is achieved. Two additional sets of results are included for comparison:
the performance of ARDrone enhanced by the DNN module trained on ARDrone
system (yellow bars), and the performance of Bebop enhanced by a DNN module
trained on Bebop system (light-blue bars). Without requiring further data collection
and offline training, the inclusion of the online learning module effectively reduces
the tracking RMSE of Bebop to values that are comparable to those of the cases
where the quadrotors are enhanced by their own offline DNN modules. These results
demonstrate the efficiency of the proposed online learning module to leverage past

experience and reduce data re-collection and training.

m Bebop Baseline = Bebop w/ ARDrone DNN = Bebop w/ ARDrone DNN & Online Learning ARDrone w/ Own DNN Bebop w/ Own DNN
8 Avg.RMS Error =0.54m  Avg. RMS Error =0.29m Avg. RMS Error =0.13m Avg. RMS Error =0.14m Avg. RMS Error =0.15m
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Figure 7.7: Tracking performance of the target system on 10 hand-drawn trajec-
tories.
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7.5 Conclusion

In this chapter, the impromptu tracking problem is considered, and an online
learning approach is proposed to efficiently transfer a DNN module trained on
a source robot system to a target robot system. In the theoretical analysis, an
expression of the online module is derived for achieving exact tracking. Then, based
on a linear system formulation, an approach for characterising system similarity is
proposed, and insights on the impact of the system similarity on the stability of
the overall system are provided in the knowledge transfer problem. The approach
is verified experimentally by applying the proposed online learning approach to
transfer a DNN inverse dynamics module across two quadrotor platforms (Parrot
ARDrone 2.0 and Parrot Bebop 2). On 10 arbitrary hand-drawn trajectories, the
DNN module of the source system reduces the tracking error of the target system
by an average of 46%. The incorporation of the online module further reduces the
tracking error and leads to an average of 74% error reduction. These experimental
results show that the proposed online learning and knowledge transfer approach
can efficaciously circumvent data recollection on the target robot, and thus, the
costs and risks associated with training new robots to achieve higher performance

in impromptu tasks.
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Chapter 8

Neural Fuzzy-Based Control

IT has been shown that fuzzy logic has an exceptional ability to handle the
uncertainties in the system [25]. Therefore, FLC is one of the most popular model-
free approaches to control nonlinear systems when their precise mathematical
model is challenging to obtain [146]. However, one weakness of FLCs is that their
parameters have to be tuned to deal with uncertainties [26]. On the other hand,
ANNSs are a family of supervised learning models that mimics human brain [17].
Therefore, ANNs are widely used in many applications due to their ability to learn
from input-output data [147]. However, the main weakness of ANNs is that their
inner workings are difficult to interpret [27]. The combination of FLS and ANN —
FNN - fuses the reasoning ability of FLS to handle uncertain information with the
training capability of ANN to learn from the controlled process [28]. Hence, FNN
adopts the advantages of both FLS and ANN [29].

In this chapter, potentials of FNNs are explored under various operational conditions.
First, Section 8.1 revises the definition of FNN. Next, Sections 8.2 and 8.3 proposes
SMC theory-based and LM theory-based training algorithms, respectively. Then,
Sections 8.4 and 8.5 show simulation and experimental results, respectively, for a
quadcopter UAV in the presence of periodic wind gust. Finally, the conclusions are

drawn in Section &.6.

Supplementary Material:
ROS package for the proposed FNN controllers: github.com/andriyukr/controllers.
Video for the experimental results: tiny.cc/FNN.
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8.1 Mathematical Preliminaries

In a general FNN, the input Z = {Z,,...,Zy,} to FNN is fuzzified by Ny MFs.
Identically to type-1 FLS, FS and MF in FNN are defined as in Definition 3.1.1,
where the parameters of MFs are among the tunable parameters of FNN. Typically,
FNN employs Takagi-Sugeno-Kang (TSK) fuzzy model in which the antecedent

part is F'S, while the consequent part is the function of input variables.

Definition 8.1.1. If Ny is the number of rules in a rule-base R, then the ;" rule
R; € R, je{l,...,Ng}, is indicated as IF — THEN statement, i.e.:

IF 7, is Ay j and ... and Iy, is An, j,

Rj : N1 , 1€ {1, .. ,NR}, (81)
THEN Cj = Z wi,jIj + w(),j

i=1

where A;; represents antecedent F'S and w; ; are weights in FNN.

Wo,1 -+ Wo,Ng
Assumption 11. The network weights W = | .. : € RWNi+1)xNg
WNr1 0 WNpNp
are bounded, i.e.:
[W(t)[|oo < cw ¥, (8.2)

where cw is some positive constants.

Remark 8.1. Often, the weights w; ; = 0,7 € {1,...,N;}Aj € {1,..., Ng}, which
results in a zero-order TSK-FNN model, i.e., ¢; = wy;, j € {1,..., Ng}.

The weights w; ;, i € {1,...,Ng} Aj € {0,..., Nr}, are updated following a set of
rules during the learning process. The firing strength f;, i € {1,..., Ng}, of each
rule is calculated with the multiplication t-norm as in Definition 3.1.5. The output

signal of FNN wupny is computed as the weighted average of each rule’s output [148]:

Ngr
SR fici —
UFNN = — N . — ZfiCh (8-3)
Zi:Ri fi i=1

where f, is the normalized value of the i*" firing strength:

- fi
= . 8.4
fz Zz:R1 i ( )
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In the proposed approach, the input is Z = {e, é}, i.e., the position feedback error
and its time derivative; while the output is O = {upnn}, i.e., the control signal.
Therefore, there are two input neurons (N; = 2) and one output neuron (Np = 1).

To fuzzify two inputs, Np Gaussian MF in (3.7) are adopted.

In the proposed control scheme, FNN works in parallel with a conventional PD
controller, as shown in Fig. 8.1. The conventional PD controller is utilized as an
ordinary feedback controller to ensure the global asymptotic stability of the system
and provide sufficient time for the initialization of the learning process of FNN.
Thus, FNN learns the control parameters and takes over the control responsibility

of the system. The overall control input u to the controlled system is defined by:
U = Upp — UFNN, (85)

where upp and upny are the control signals produced by the PD controller in (6.8)

and the FNN controller in (8.3), respectively.

By Assumptions 6 and 11, the consequent ¢;, i € {1,..., Ng}, in (8.1) is bounded,
ile.
|Cl(t)| <c., 1€ {17...,NR} Vt, (86)

where ¢, is some positive constant. From Remark 3.3 and (8.4), it is evident that

F.oel0,1, ie{l,... ,Ng) (8.7)

In addition, from (8.3), (8.6) and (8.7), uan~(t) and uanxn(t) are also bounded

signals, i.e.:

Vi, (8.8)

where ¢, and ¢; are some positive constants.

~
FNN  ———

e d e u
dt
N G
PD

Figure 8.1: Control scheme: FNN in parallel with PD controller.




122 8.2. Sliding Mode Control-Based Learning

8.2 Sliding Mode Control-Based Learning

The zero dynamics of the learning error coordinate upp(t) can be described as a

time-varying sliding surface Spp by utilizing the principles of the SMC theory [149]:

SPD<UFNN7 u) = UPD(t) = UFNN(t) + U(t) = 0 (89)

By using this condition, the FNN structure is trained to become a nonlinear regulator
which assists the conventional parallel controller to obtain the desired response.

Hence, the sliding surface for the nonlinear system under control is as follows:

S(e, é) = é+ de. (8.10)

where A > 0 is a parameter which determines the slope of the sliding surface. A
sliding motion will appear on the sliding manifold Spp(urnn, u) = 0 after a finite
time ¢, if the condition SPD(t)SpD(t) = upp(t)upp(t) < 0 is satisfied for all ¢ in
some nontrivial semi-open subinterval [t, ;) C (—o0,ty). Since it is desired to design
a dynamical feedback adaptation mechanism, or an on-line learning algorithm, for

the FNN parameters such that the sliding mode condition above is enforced.

Theorem 8.2.1 (Stability of FNN with SMC). If the SMC theory-based parameter

update rules for FNN are as follows:

(

C1; = 7
Coi = 7,
; &, :
di;, = —a@iwsagn(umg) Vie{l,...,Np} (3.11)
; ds ; . . :
doy = —a(bf#&gn(upD) Vi e{l,..., Nr},
. 7o
wo,j = —O[FT]FSIgD(’U/pD>
& =7luep| —yra
71,1 71,NF
where F = : , a > 0 is an adaptive learning rate, v > 0 and
I I e e

v > 0 are learning parameters; then, the control signal upp(t) will converge to a
small neighbourhood of zero during a finite time ¢, for any arbitrary initial condition
UPD(O).
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Proof. To fuzzify two inputs, the following Gaussian MF in (3.7) are adopted:

(Tr—c1,5)?
p,;(Z1) = exp [——J]
’ (22_@]")2 Ve {1,...,Np}. (8.12)
pa(T2) = exp [~ e |
The time derivatives of (8.12) is as follows:
1 (7h) = —2A1 (A1) i (Z
) i@ N, (8.13)

fro5(Zy) = —2A5 ;( Az ;) 112,5(ZL2)

where Ay ; = %4 and A, ; = 2224 The time derivative of (8.4) can be obtained

dlv] d2,j
as follows:
. Nr Np
Fig=—TiKi+Fi; > ) FijKiy Vie{l,...,Ne} Vje{l,... Ng},
i=1 j=1
(8.14)
where Ki,j =2 (AlviAll,i + AQJ‘A/QJ).
The Lyapunov function is selected as follows:
1 2 1 *) 2
V= §uPD(t) + %(a —a’) . (8.15)
The time derivative of (8.15) is given by:
- . . L. .
V' = upp (pnn + @) + ;a (a—a"). (8.16)

The time derivative of (8.3) is given by:

Nr Npg

=3 (c'i,j?iyj + cmﬁj) . (8.17)

i=1 j=1
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By replacing (8.17) to (8.16), the following equation is obtained:

. Np Np _ o _ Ne Np
V= UPD(Z Z (éi,jfi,j + Cij <_fz',jKi,j + fi,j Z Zfi,jKi,j>) + u)

i=1 j=1 i=1 j=1
+ Lafa—a’)
—ala —«
~
Nr Np Np Np
= upp ( SN s —2D ) Fii (Avi(Av) + A j(Azy)) ey
i=1 j=1 i=1 j=1
Nr Np Nr Np
#2333 (T T3 T (st + ) +3)
i=1 j=1 i=1 j=1
+ Za(a—a’)
—a(a — a®),
~
(8.18)
where
Alj _ (fl*él,j)dl,j;(IﬁCl,j)dLj
o vie{l,...,N 8.19
A, = (Ta—¢2,5)da j—(Ta—c2,j)da ; J e Nik (8.19)
2] d%,j
From (8.11), follows:
Al,jAl,j = AQ’jAQ’j = asign(upD). (820)
Consequently, (8.18) becomes
Ngp Np Nr Np
v = uno (z S 6T~ 430D T asien(uen)
i=1 j=1 i=1 j=1
Ne Np Np Ny , (8.21)
+4) ) (fi,jcm- >N fivjozsign(uPD)> + u> + ;a(a — o).
i=1 j=1 i=1 j=1

Since SN Z;V:FI fi; =1; then, (8.21) becomes

Ny Np 1
V= Upp (Z Z éi,jfi,j + U) + ;OJ(CK — Oé*), (822)

i=1 j=1

where

Cij = __M;iaSign(uPD)- (8.23)
W W
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Furthermore,

. 1
V' = upp (—asign(upp) + ) + ;o’z(& — )
1
= —Oé|UpD| + ‘UJPD|C¢L + ;Oz(O& — Oé*) (824)

1. .
= —(a — a")|upp| — a*|upp| + |upp|cq + ;a(a —a’).

Considering the adaptation law of « as follows,
& = y|upp| — yra; (8.25)

then, (8.24) becomes:

. 1
V = |upp|cy — a*|upp| — v(a — =a*)* +

V 2
— . 2
5 1 (8.26)

By taking o* as ¢; < %*, it follows:

V< = lupo| + Za, (8.27)

which implies that the Lyapunov function decreases until |upp| < % So that upp
will stay bounded. Furthermore v is a design parameter and it is possible to take
this value as small as desired. The relation between the sliding function S, and the

zero adaptive learning error level Spp is as follows:
SPD = Upp — kpe = kpSp. (828)

]
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8.3 Levenberg-Marquardt-Based Learning

Theorem 8.3.1 (Stability of FNN with LM). If the LM theory-based parameter

update rules for FNNs are as follows:

(

¢y = 7
Coi = 7
a3 . . ’ )

d,; = _a(Il_l—C’;i)ngn(uPD) ' (8.29)
. 3, . V] 6{17' 7NR}7
do; = —ammgn(um})

T -1 _
wo,; = —7 <FTF + 5I> Fsign(upp)

where ¢ is the adaptive parameter and is selected equal to
_T_
§ = max <F F, a> : (8.30)

in which « has a constant value; then, the learning error upp(t) will converge to a

small neighbourhood of zero during a finite time ¢, for any arbitrary initial condition
UpD (0) .

Proof. The Lyapunov function is selected as follows:

V= %U%D(t). (8.31)

The time derivative of (8.31) is given by:

Nr Np
V = UpD (Z Z U'Ji,jfi,j + u) . (832)

i=1 j=1
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From (8.29), follows:
. — — — —\ —1 __ —
V = upp (WFT <—51 +6'F (I + FTale) FT51> Fsign(upp) + uPD>
=T IR =T=\"'=T\ =.. :
= UpD ’7F ) —+ 0 F ((5 + F F) F FSlgn(uPD) -+ upp
—T— —T— —7r—\ 1 __7__
— 57 F Flupp| + |upp|d 'AF F (5 + FTF> F F 4+ cylupp)|
—T— —T— —7—\ 1 —T—
= —6~'5F Flupp| + Jupp|dAF F (5 + FTF> (5 LFF- 5) + eglupp]
e e e 1
= —5_1")/FTF|UPD’ + ’}/”LLPD|5_1FTF — "}/|UPD|FTF <5 + FTF> + Cu|UPD’

Y _ N\ —1
= —7|uPD|FTF (5 + FTF> + C@|UPD|.

(8.33)
By considering § = FTF, (8.33) becomes:
V = —0.5v|upp| + calupp|- (8.34)
It is further assumed that v > 4c¢;, so that:
. 1
V< _Z'Y|UPD|- (8.35)
O
8.4 Simulation Results
The control gains for the PD controller are chosen as follows:
k, =25
(8.36)

ks = 0.005.
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The initial control parameters of the FNN controller are:

( r T

Clax = Cly = Ci2 =(-=10 O 10}
- T

Cox = Coy = C2 =|1-1 0 1]
- T

dl,m = dl,y = dl,z =15 5 5] (837)
- T

dow =doy=do, =105 0.5 0.5]

Oy =y = @ = 0.001,

\

while the initial condition of time variable weight coeflicients w; ;(0) are chosen
randomly to be sufficiently small, i.e., w; ;(0) € [0,0.001]. The adaptive learning
parameters for FNN with SMC theory-based rules are chosen as:

Yo=Yy =7z =1

(8.38)
Ve =1y =1, =0.09;
FNN with LM theory-based rules:
Tz =Ty =7 (8.39)

0y =0y =0, =1;
with the update rate dt = 0.01s.

In the classical UAV flight missions, climbing, hovering, ascending and descending
curves as well as level flight are considered as typical flight manoeuvres. Therefore,
in the experimental scenario, all aforementioned manoeuvres will be included during
the flight of quadrotor in order to evaluate the robustness of proposed controllers
under the flight sequence which resembles the actual UAV flights. At the beginning,
the quadrotor UAV is hovering at the initial position. Then, it starts to make a
smooth eight-shaped trajectory. Throughout the simulation, the module of the
desired linear velocity is kept constant and equal to 2.5m/s. Besides, the feasibility
of flight under the dynamic constraints of quadrotor is ensured by saturating the

control input signals and defining trajectory as a time-based trajectory.

In the tested scenario, to evaluate the efficacy of the proposed control strategy, the

periodic wind gust is added. The wind gust blows with the speed v, = 3.0m/s
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along [—1,—1,0] direction for the first 20s. Then, its orientation changes to the

opposite direction, to change back to the original direction after 40s.

8.4.1 Discussion

Fig. 8.2 shows the trajectory tracking in the presence of periodic wind for PD
controller and two FNN controllers which are tuned by SMC and LM methods
which operate in parallel with the conventional PD controller. From Fig. 8.2, it
is evident that the PD controller has a notable steady-state error due to internal
uncertainties such as lack of modelling as well as external disturbance from the wind.
Besides, when the PD controller works alone, it cannot eliminate the steady-state
error. However, in the case of SMC-FNN and LM-FNN controllers, the steady-state
error is notably reduced because of adaptive learning capabilities of FNN structure.
As a result, trajectory tracking performance of quadrotor which uses intelligent
FNN structures becomes significantly better compared to the normal case, when

the PD controller is only used.

As for output control signals, Fig. 8.3 and Fig. 8.4 present control signals for z,
y and z axes in case when the PD controller is operating in parallel with FNN
controller which are tuned by SMC and LM approach, respectively. As can be seen
from these figures, the FNN controller is taking over the control responsibilities

from PD controller, and therefore, after some time the output control signal from

40

= = = Reference trajectory
35 ——#D

PD+SMCFNN
PD+LMFNN

30

g 5
10 0
y [m]

Figure 8.2: Trajectory tracking of different FNN position controllers in presence
of wind.
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Output signal

4 | | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50
Time [s]

(a) z-axis

5 T T T T T T T T

Output signal

5 1 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
Time [s]

(b) y-axis

Output signal

Time [s]

(c) z-axis

Figure 8.3: Control signals for x, y and z axes generated by PD and SMC-FNN.

PD controller approaches to zero neighbourhood, and then only FNN controls
the system as it is supposed to do in such kind of control schemes. It should be
noted that when trajectory sequence changes or some disturbances occur the output
control signals from the PD controller become non-zero. In such case, FNN restarts
the learning process and takes over control responsibilities again as shown in Fig. 8.3
and Fig. 8.4.

The Euclidean errors in presence and absence of wind are shown in Fig. 8.5. In
both cases, the combination of PD and FNN controllers, PD + SMC-FNN and
PD 4+ LM-FNN, give a significantly less error than the conventional PD controller
when it works alone. On the other hand, the PD controller can be tuned in a more
aggressive way to achieve superior results, although this is not practical in real life

due to the lack of modelling and unknown disturbances in real-time applications.
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Output signal

Output signal

Output signal

|
0 5 10 15 20 25 30 35 40 45 50
Time [s]

(c) z-axis

Figure 8.4: Control signals for x, y and z axes generated by PD and LM-FNN.

2.5 T T T T T T T T T T
PD

PD+SMCFNN ||
PD+LMFNN

N

=
[ o

Euclidean error [m]
o
o

o

10 15 20 25 30 35 40 45 50
Time [s]

o
(4]

Figure 8.5: Euclidean MSE of different FNN position controllers in presence of
wind.

Furthermore, aggressive tuning tends to be the case dependent, and therefore, it
cannot give the comparable performance in different conditions; while adaptive

learning capabilities of FNN structure are essential for real-world applications.
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8.5 Experimental Results

The experimental flight tests for the trajectory tracking problem were conducted in
the indoor environment. The aircraft used for the experiments is Parrot AR.Drone
2.0 Power Edition UAV, which is a velocity controlled commercial quadrotor. The

control approaches are implemented in Linux using ROS and C++4 environment.

8.5.1 Discussion

The performance of the PD controller alone and FNN controller trained by SMC
and LM working in parallel with the conventional PD controller for the eight-shaped
time-based trajectory is presented. The maximum speed along the trajectory is kept
to be Im/s. To evaluate the efficacy of the proposed control strategy, an industrial
fan, which generates maximum wind gust of 2m/s, is used to imitate the external

disturbances. The wind gust blows along the [1, —1, 0] direction.

In Fig. 8.6, the trajectory tracking is shown for the PD controller and FNN controllers
which are tuned by SMC and LM. As can be seen, the steady-state error is notably
reduced because of the learning capabilities of FNN structure. This can also be
seen from the Euclidean error and the average RMSE values from ten experiments
which are shown in Fig. 8.7 and Table 8.1, respectively. The combination of PD and
FNN controller gives a significantly less error than the conventional PD controller
when it works alone. It should be noted that FNN controllers decrease the PD
controller RMSE error by about 36%.

0.5 -

y[m]

05|

[—Reference

—pPD
—PD+SMCFNN
| —PD+LMENN |

15

I I I I I I
2 15 1 0.5 0 05 1 15 2
x[m]

(a) in xy-plane (b) in 3D view

Figure 8.6: Trajectory tracking for v,, = 2m/s.
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Figure 8.7: Euclidean error with wind gust v,, = 2m/s.

Hence, the trajectory tracking performance of the quadrotor which uses intelligent
FNN structure becomes significantly better compared to the normal case when
the PD controller is only utilized. However, SMC-based and LM-based FNN
controllers were not able completely to take over the control responsibilities from
the PD controller as shown in Fig. 8.8 and 8.9. Whereas both FNN controllers were
dominating in simulation studies, it was not the case for the real-time tests. The
reason for this is the space limitation of the Motion Capture Lab which measures
5 x 7Tm?. Therefore, the active area for UAV is around 3 x 5m?. In such a small area,
also by having challenging trajectory, the FNN controller does not have enough
time to learn. Besides, there exists a communication delay between computer and
AR.Drone UAV. This latency is mainly caused by the WiFi protocol delay as well
as the down-sampling /buffering step performed by AR.Drone firmware prior to
sending the feedback over WikFi.

Table 8.1: Average Euclidean RMSE for considered controllers [m].

| Controller | PD | SMC-based FNN | LM-based FNN |
| RMSE |0.327 ] 0.210 | 0.228 |
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Output signal
& o
Output signal

3 4 6
Time [s] Time [s] Time [s]

(a) in z-axis (b) in y-axis (c) in z-axis

Figure 8.8: Control signals for x, y and z axes generated by PD and SMC-FNN.

Output signal
5
Output signal

6 4 6 8 4 6
Time [s] Time [s) Time [s]

(a) in z-axis (b) in y-axis (c) in z-axis

Figure 8.9: Control signals for x, y and z axes generated by PD and LM-FNN.

8.6 Conclusion

In this chapter, SMC theory and LM-based learning algorithm for intelligent FNN
controller are proposed for the control and stabilisation of the quadrotor UAV along
a predefined trajectory in the presence of wind gust conditions. The stability analysis
of the proposed parameter update rules is presented. It was also demonstrated that
proposed methods are capable of significantly reducing the steady-state errors and
overcome the disturbances and existed uncertainties which are generated by lack of
modelling. Extensive simulations in ROS and Gazebo environment are conducted
to evaluate the performance of the proposed controllers with the conventional PD
controller. In order to further test the proposed methods, the real-time experiments
have been also performed by using OptiTrack Motion Capture System. Experimental
results show that the combination of PD and FNN which is tuned by SMC and LM
algorithms gives a significantly lower steady-state error than the conventional PD

controller when it works alone.



Chapter 9

Deep Fuzzy Neural
Network-Based Control

IT has been shown that DNNs are good at approximating knowledge, but they
do not explain how they take their decisions [30]. On the other hand, FLSs are
good at explaining their decisions, but generally, they are not good at acquiring
new information [26]. The limitations of these two techniques have been a driving
force behind the creation of hybrid systems where the combination of DNN and
FLS can overcome the drawbacks of each individual method [31]. In the literature,
there are attempts to integrate strengths of learning capability of neural networks
and reasoning ability provided by fuzzy logic, called FNN [91]. However, these
approaches usually utilise sequential learning paradigms [94]. Correspondingly, one
may ask whether a joint learning framework exists that fuses wisely these two
methods [150].

In this chapter, potentials of DFNNs are explored under various operational condi-
tions. First, Section 9.1 revises the definition of DFNN. Then, Sections 9.3 and 9.4
show simulation and experimental results for linear system and quadrotor UAVs,

respectively. Finally, the conclusions are drawn in Section 9.5.

Supplementary Material:
Video for the experimental results: tiny.cc/DFNN.
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9.1 Mathematical Preliminaries

To deal with the problems described in Chapter 2, an adaptive controller which
can learn system dynamics online and deal with uncertainties is required. It
has been shown that DNNs are able to learn from input-output data, whereas
fuzzy logic has an ability to handle noise and uncertainties. The DNN with one
antecedent fuzzification layer, also called DFNN, can be used for learning control of
nonlinear systems. The DFNN neurons are organised in input layer with N; neurons,
fuzzification layer with (N; x Ng) neurons, Ny fully-connected hidden layers with
Ngn, h € {1,..., Ny}, neurons in each layer, and output layer with No neurons,
as shown in Fig 9.1. The input Z = {Z;,...,Zy,} to DFNN is fuzzified by Np MFs.
Then, the fuzzified input {ur (1), ..., pry, (T1)s - s o (Ing)s - - iy, (Ing) } 8
forwarded to the first hidden layer of DFNN through the network weights Wj.
The hidden layers in DFNN are organized in a fully-connected structure with the
network weights Wy, h = 2,..., Ny. Finally, the output O = {Oy,...,0p,} is
computed by applying the network weights Wy, 11 to the output from the last
hidden layer.

Fuzzification
Input layer Hidden layers Output

W, W layer

W i1, n- -
1

O,

On

O

Figure 9.1: Structure of DFNN organised in input layer with N; neurons, fuzzi-
fication layer with (N x Np) neurons, Ny, fully-connected hidden layers with
N p, h € {1,...,Np}, neurons in each layer, and output layer with No neurons.
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9.2 Network Training

The training is subdivided into two phases: offline pre-training and online train-
ing [151]. During the offline pre-training phase, a conventional controller performs
a set of trajectories and the batch of training samples is collected. Then, DFNN-
based controller, called DFNNj, is pre-trained on the collected data samples, to
approximate the inverse of the system’s dynamics. However, DEFNN, cannot adapt
to the new conditions; therefore, the online training is required. During the online
learning phase, DFNN controls the system and adapts the control input to improve
performances. The expert knowledge encoded into the rule-base, thanks to the
fuzzy mapping, provides the adaptation information to DFNN. The approximation
of the inverse of the system dynamics is a typical regression problem; therefore, the

cost function for both offline and online training is the mean squared error.

9.2.1 Offline Pre-Training

During the offline pre-training phase, a feed-forward DFNNj learns the approximate
inverse dynamics of the system by adjusting the weights {W% e ,W?VL +1} in
the network. In this control scheme, shown in Fig. 9.2, a conventional controller,
e.g., PID controller, controls the system alone. Hence, it is utilized as an ordinary
feedback controller to provide labelled training samples for DFNN,. Each labelled
training sample Dy (k) consists of input Zy(k) and expected output Oy (k) pair:

Do(k) =< Zy(k), Oo(k) >

(9.1)
=< {X(k - f)vy(k)}a {U(k’ - f)} >
where 7 = y Ir[lax | r;. The training of DFNNj involves back-propagation to minimize
i€|l,no
the loss over all training examples, and the network weights {W?, LW +1} are

updated until the over-fitting appears. After the training, DFNNg can approximate
the inverse dynamics of the nominal system. The pseudo-code of the offline pre-

training is given in Algorithm 2.
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)
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2,
Z,
S

y -+
—>O—e> Controller

Figure 9.2: Block diagrams of the offline pre-training of DFNN by conventional
controller (solid lines represent calculated quantities, dashed lines represent
measured quantities, dotted lines represent estimated quantities).

System f-4-»

9.2.2 Online Training

During the online training phase, DFNN controls the system and, at the same time,
learns how to improve the control performances. Since DFNN training requires
supervised learning, another process has to provide feedback about its performances.
In the proposed approach, FLS is used to monitor the behaviour of the controlled
system. By its nature, FLS incorporates the expert knowledge in the form of rules
and uses this knowledge to provide useful advice [152]. The control scheme of the

online training is shown in Fig. 9.3.

The objective is to learn the control of the system by only looking at its performance,

i.e., the tracking error:
e(k) =y"(k) —y(k), (9:2)

and its time derivative:

e(k) =y (k) = y(k), (9:3)

Algorithm 2: Offline pre-training of DFNN.
Input: {Ny1,...,Nun,}
Output: Pre-trained DFNN,
begin
while £ < MaxSamples do
Get x(k —7), y(k), and u(k —7)
Collect Dy(k) in (9.1)
end
DFNNj < ConstructNetworkLayers(Ny 1, ..., Nyn,)
{W? ..., W% 1} < InitializeWeights()
Train DFNNy on Dy
end
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* %Wla"'vaL-‘rl}
DFNN System

A\

Figure 9.3: Block diagrams of the online training of DFNN by FLS (solid lines
represent calculated quantities, dashed lines represent measured quantities, dotted
lines represent estimated quantities).

where y = g—% € RY0 is the time derivative of the output from the system, and

*

y' = %Lk* € R0 is the time derivative of the desired output.

In the proposed approach, FLS observes the behaviour of the system controlled
by DFNN, and, depending on the situation, corrects the action from DFNN. The
possible evolutions of the tracking error are depicted in Fig. 9.4. For example, if
the error is positive, i.e., e;(k) > 0, and its time derivative is also positive, i.e.,
é;(k) > 0, then the system diverges (top red curve in Fig. 9.4). In this case, FLS
will force DENN to decrease the control signal u;(k) significantly to stabilize the
system, i.e., Auj(k) < 0. In another possible case, if the error is negative, i.e.,
e;(k) < 0, and its time derivative is zero, i.e., é;(k) = 0, then the error is steady
(bottom purple line in Fig. 9.4). In this case, DENN falls down in a local minimum
and FLS will give a small positive perturbation, i.e., Au;(k) > 0. Finally, if the
error is zero, i.e., e;(k) = 0, and its time derivative is also zero, i.e., é;(k) = 0, then,
this is the optimal case (green line in Fig. 9.4) and no action has to be taken, i.e.,
Auj(k) = 0.

All these intuitive rules can be formally represented by a typical Mamdani FLS. For
each case, one rule R;, i € {1,..., Ng}, exists in the rule-base in Table 9.1, where
the colour of the cell corresponds to the curve colour in Fig. 9.4. The inputs to FLS
are selected to be the tracking error and its time derivative, i.e., e;(k) and é;(k);
while the output is the correction signal, i.e., Au;(k). The inputs are represented
by three FSs: negative, zero and positive; while the output can belong to five FSs:

big decrease, small decrease, no changes, small increase and big increase.

The antecedent MFs are selected to be triangular MFs, as defined in (5.4) and
illustrated in Fig. 5.1. On the other hand, the consequent FSs are selected to
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Figure 9.4: Possible evolution of the controlled dynamical system. The system
can diverge (red curves), converge (blue curves), it can have a steady error (purple
lines), or the error can be zero (green line).

be singleton MFs, as illustrated in Fig. 9.5. Hence, by using the approach in
Section 5.2.1, FM which represents FLS described in Table 9.1 in an analytical form

can be generated:

plej, é5) = lej| — == — ~lejé;| — —ejé;. (9.4)

Finally, (9.4) in its multidimensional form can be used to update the control signal:
At(k) = ap (e(k), &(k)), (9.5)
where @ > 0 is a scaling factor.

Table 9.1: Rule-base for the updates of u;(k).

o ] B0
| ! || Negative || Zero ” Positive
Negative || R; : Big R : Blg Rs - Small
decrease increase increase
Small No Small
Zero By : decrease Fis : changes B : decrease
Positive R Small Rs : Blg Ry : Big
increase increase decrease
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Figure 9.5: ”Big decrease” (BD), "small decrease” (SD), "no change” (NC), ”"small
increase” (SI) and ”big increase” (BI) consequent FSs for the update of the
control signal represented by five singleton MFs.

Remark 9.1. A large o allows learning faster at the cost of possible divergence or
oscillation of the controlled system. A smaller o may allow learning more safely

and conservatively but may make the learning significantly longer.

Remark 9.2. If e(k) and e(k—1) are approximately 0, i.e., e(k) ~ 0Ae(k—1) ~ 0;
then, é(k) approaches 0, i.e., €(k) — 0. Consequently, from (9.5) and (9.4), At
is asymptotically equivalent to 0, i.e., Ati(k) ~ 0. Therefore, the weights are not

updated, and the convergence condition is reached.

Each labelled training sample D(k) consists of input Z(k) and corrected output
O(k) pair:
D(k) =< ZI(k),O(k) >

(9.6)
—< {x(k),y*(k + )}, {a(k) + Aa(k)ak)} > .

At each iteration, DFNN is adapted with this training sample, and the new output

from the network is computed:
u(k) = DENN(Z(k)). (9.7)

The pseudo-code of online training is provided in Algorithm 3.

For the system in (2.1), a necessary condition for the stability of the inverse
dynamics, and hence for the effectiveness of the DFNN-based approach, is the
stability of the zero dynamics of the system [153].
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Algorithm 3: Online training of DFNN.
Input: Pre-trained DFNN,
Output: Trained DFNN

begin
DFNN <« DFNNj
repeat
Get y(k), y*(k), (k) and y° (k)
e(k) < y*(k) —y(k) by using (9.2)
( ) <= y"(k) —y(k) by using (9.3)
Au(k) «+ aFLS(e(k),é(k)) by using (9.5)

u(k) < DFNN(Z(k)) by using (9.7)
Adapt DENN with D(k) by using (9.6)
Send u(k) to the system
until Stop

end

Theorem 9.2.1 (Stability of DNN). Consider the system in (2.1) and the control
signal G(k) in (9.7). The overall closed-loop system is bounded-input bounded-
output (BIBO) stable iff Assumptions 1, 2, 3, 4 and 7 are verified.

Proof. A dynamical system is BIBO stable, if for any bounded input corresponds a
bounded output. In the proposed approach, the input is y*; while the output is y.

i) If the controlled system is the nominal system on which DFNN, was trained,
and if the output from DFNNy, w(k), accurately approximates the exact
inverse of the system, u(k), i.e., (k) =~ u(k); then, the inverse model update,
At(k) ~ 0. Thus, the control input to the system is u(k). From (2.5), the
system’s output, y, can be bounded by:

[y (B)lleo < erllx(R)lloc + collu(k)loc + 5 VE, (9:8)

where ¢q, ¢3 and c3 are some positive constants. From Assumption 3, the

system’s state, x, can be bounded by:

%K)l < callu(k)lloo + esl1%(0)lloo + 6V, (9.9)
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ii)

where ¢4, ¢; and ¢ are some positive constants. From (2.8), the system’s

input, u, can be bounded by:
a(k)[lee < erllx(k)lloc + cslly™ (K)o + o VE, (9.10)

where ¢7, ¢g and ¢y are some positive constants. By using (9.9) and (9.10)
in (9.8), the overall closed-loop system in Fig. 9.2 is BIBO stable.

If the controlled system is different from the nominal system on which DFNN|
was trained, or if the output from DFNNy, G(k), does not approximate
accurately the exact inverse of the system, u(k), i.e., (k) % u(k); then, the
inverse model update, Ati(k) # 0. Therefore, the control input to the system
is (k) + Aa(k). From (2.5), the system’s output, y, can be bounded by:

[y (F)lloe < crllx(R)l[oo + coll(k) + At(k)l[oo + c5

(9.11)
< a1|[x(F)|oo + col[(k) [ + 2| Al(K) || + c5 VE.
From Assumption 3, the system’ state, x, can be bounded by:
X(E)|loo < cull(k) + AU(K)|| + c5]|x(0)]| o + ¢
% (k)| 4|l a(k) (R 5[ (0) ] 6 (0.12)

< cala(k)lloe + call AGE) oo + ¢5[1%(0)[|oc + c6 V.

From (2.8), the output from the DFNN module, @, can be bounded by:

Np
[kl < ew il Wilk)l|oo + c10 Yk, (9.13)
=1

where 1o is some positive constant. It has to be noted that the inputs to
DFNN and FLS modules are bounded by the Gaussian and triangular MFs
in (3.7) and (5.4), respectively. Simultaneously, the output from the FLS
module is bounded by the singleton MF's in Fig. 9.5, i.e.:

|AG(E)||w < @ < 00 VE. (9.14)

By using (9.12), (9.13) and (9.14) in (9.11), the overall closed-loop system in
Fig. 9.3 is BIBO stable.

Since both cases with and without online learning are BIBO stable, the overall
closed-loop system is BIBO stable. O]



144 9.2. Network Training

In the universal approximation theorem [154], it has been proven that ANN with
a single-hidden-layer containing a finite number of neurons can approximate any
continuous function. In [155], the authors found the relation between the number
of hidden neurons and the function complexity. Therefore more layers and neurons
the neural network has, more complex mathematical relation it can approximate

with higher accuracy.

On the other hand, from the asymptotic analysis, the runtime complexity for the
forward-propagation is O(Ny, - N3, + Np - Ng) = O(Ny - N3). While the runtime
complexity for the back-propagation is O(Ngn-Np-Njy+Np-N3) = O(Non-Nr-Njy),
where Ngn is the number of iterations in the quasi-Newton method. Moreover, the
runtime complexity for FM in (9.5) is constant w.r.t. the architecture of the network,
i.e., O(1). The dominant operation in DFNNj is the forward-propagation; therefore,
the runtime complexity of DFNNj is polynomial. However, DFNN with online
learning involves both forward-propagation and back-propagation; therefore, the
runtime complexity of DFNN is also polynomial but asymptotic to O(Ngn - Np- Nj;).
At the same time, from the asymptotic analysis, the space complexity to store
DFNN is O(N; - Ny - Ng + (Np —1)- N4 + Ni - No) = O(N, - N%). Moreover, the
space complexity for FM in (9.5) is constant w.r.t. the architecture of the network,

ie., O(1).

Table 9.2 summarises the runtime and space complexities for the considered con-
trollers. It is possible to observe that DFNN has the highest runtime complexity,
since it performs the online back-propagation which is computationally expensive.
Besides, the space complexity of DFNNy and DFNN is asymptotically equivalent,

since most of the space is occupied to store the weights of DFNN.

Remark 9.3. The architecture of DFNN in the proposed approach should be
chosen as a compromise between the learning capability of the neural network and

the update time through the back-propagation.

Table 9.2: Asymptotic analysis of different controllers.

| Complexity ” PID | DFNN, | DFNN |
Runtime O(1) | O(NL - N}y) | O(Ngn - N - Njy)
Space O(1) | O(NL - N%) O(N - N%)
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9.3 Simulation Results

The proposed approach is tested on four single-input-single-output systems: nominal

system, nominal system with internal uncertainties, nominal system with external

disturbance, and nominal system with noisy measurements. The desired trajectory

is:
1 1
y (k) = 3 sin (37k) + 5 cos (2mk) — 1.

while its time derivative is:
y* (k) = mcos (3mk) — msin (27k).
The nominal nonlinear system is selected as:

) 0
x(k+1) = + u(k)
T — 13 1

y(k) = —0.221 + z5.

The nominal system in (9.17) with internal uncertainties is:

0.5x4 0
x(k+1) = + u(k)
0.5z, — 0522 |05

y(k) = —0.1z; + 0.525.

The nominal system in (9.17) with external variable disturbance is:

T2 0 0
x(k+1) = + u(k) +
T — 23 1 cos(2k)

y(k) = —0.2x1 + z2.

The nominal system in (9.17) with noisy measurements is:

) 0
x(k+1) = + u(k)

T — T3 1

y(k) = —0.221 + z2 + N(0,y(k — 1)).

(9.15)

(9.16)

(9.17)

(9.18)

(9.19)

(9.20)
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Throughout the simulations, the systems in (9.17)-(9.20) are assumed to be black-
boxes. Therefore, only input-output data and some basic properties, such as the
relative degree 7, are used. It is possible to verify with (2.2) that the relative degree
7 = 1 for the systems in (9.17)—(9.20). A feed-forward DFNN with hyperbolic
tangent (tanh) activation functions is designed. According to (9.1) and (9.6),
DFNN has three inputs (N; = 3) and one output (Np = 1). In addition, after
some heuristic analysis and experimental trials, the architecture of the network is
chosen to consist of one fuzzification layer with three MFs (Np = 3) and two fully
connected hidden layers (N, = 2) with 16 neurons in each layer (Ny; = Ny o = 16).

The scaling factor o = 0.1 in (9.5), for all cases.

In order to collect the training data for the offline pre-training, the nominal system
is controlled by the PID controller which has been tuned by trial-and-error. Thus,
2’000 input-output training pairs Dy(k) =< {x1(k—1),z2(k—1),y(k)}, {u(k—1)} >
are stored. Then, DFNNj is trained on Dy by using the LM algorithm. After that,
the pre-trained DFNN controls the system online and, at each iteration, it is updated
with D(k) =< {x1(k), z2(k),y*(k + 1)}, {u(k) + Au(k)} >.

9.3.1 Discussion

To show the efficiency of the proposed approach, the performances of the developed
DFNN with online learning are compared with the performances of the exact
analytical inverse of the system dynamics, PID controller (used for the collection of
training samples), type-1 FNN (T1-FNN)-based controller with Gaussian antecedent
MFs and LM theory-based update rules presented in Section 8.3, and interval type-2
FNN (IT2-FNN)-based controller with elliptic antecedent MFs and SMC theory-
based adaptation laws from [6], and DFNN, controller without online training.
As can be seen from Figs. 9.6-9.9, the exact analytical system inverse is able to
track perfectly the reference trajectory. However, in real-world it is difficult, and
sometimes even impossible, to calculate the exact inverse dynamics of the system.
From Fig. 9.6, it is possible to observe that both DFNNy and DFNN with online
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learning are able to track precisely the desired trajectory of the nominal system.
Besides, DFNN, approximates very accurately the exact inverse of the system
in (2.8). From Fig. 9.7, it is possible to observe that DFNNj is not able to track
the desired trajectory on the system with modified dynamics, and its performances
are worse than the ones of PID, T1-FNN and IT2-FNN controllers; while DFNN
with online learning is able to learn the new system dynamics and obtain a good
performance. From Fig. 9.8, it is possible to observe that PID, T1-FNN and DFNN,
become unstable with time-varying disturbance; while DFNN with online learning
is able to learn new conditions and obtain a good performance. From Fig. 9.9, it is
possible to observe that PID controller is not able to deal with this level of noise;
while all T1-FNN, IT2-FNN, DFNNy and DFNN are able to control the system.

As can be seen from Table 9.3, the exact analytical system inverse is able to track
the reference trajectory with negligible error. On the other hand, the DFNN-based
controller with online learning outperforms all PID, T1-FNN, IT2-FNN and DFNN,
for all tested cases in terms of MAE. Only in the case with noisy measurements,
DFNN with online learning tries to learn also the noise which makes its performances
worst than DFNNj.

Table 9.3: Comparison of different controllers in terms of MAE [m].

System System System System
Controller iny(9.17) iny(9.18) iny(9.19) iny(9.20)
Inverse ~0 ~ 0 ~ 0 ~ 0
PID 0.265 0.386 00 00
T1-FNN 0.216 0.261 00 0.225
IT2-FNN 0.196 0.225 0.223 0.204
DFNN, 7.53 x 1070 0.505 00 0.097
DFNN 1.01 x 107¢ 0.090 0.038 0.100
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Figure 9.6: Performances on the nominal system in (9.17).

——inverse ~——PID —TI1-FNN
——IT2-FNN DFNN;, — DFNN

- =-y* ——inverse ——PID —TI1-FNN
—IT2-FNN DFNN; —DFNN

——IT2-FNN DFNN;, —DFNN

——inverse ——PID —Tl—FNN‘

System’s output
System’s input

Time [s]

Time |s]
(a) Tracking. (b) Control signal. (c) Tracking error.

Figure 9.7: Performances on the system with internal uncertainties in (9.18).
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Figure 9.8: Performances on the system with external disturbance in (9.19).

—inverse ——PID —Tl-FNN‘

——IT2-FNN DFNN; ——DFNN
—IT2-FNN DFNN; —DFNN

- - .y* ——inverse ——PID —TI»FNN‘ inverse ~——PID —Tl-FNN‘

——IT2-FNN DFNN;, —DFNN

1.5

w

,_.
)

|Error|

System’s output
4
B
System’s input
—

o
=

)
&

S}
—

2 3 4 2 3 4
Time [s] Time |s] Time |s]

(a) Tracking. (b) Control signal. (c) Tracking error.

=)
—

Figure 9.9: Performances on the system with noisy measurements in (9.20).



Chapter 9. Deep Fuzzy Neural Network-Based Control 149

9.4 Experimental Results

To validate the capabilities of the proposed controller, the trajectory following
problem of a quadcopter UAV is considered. The experimental platform used in this
work is Parrot Bebop 2 quadcopter UAV, and ROS is used to communicate with
UAV. The visual-inertial odometry algorithm is used to provide the UAV’s real-
time position at 24Hz. This information is fed into the ground station computer
(CPU: 2.6GHz, 64bit, quad-core; GPU: 4GB; RAM: 16GB DDR4) where the

controllers are executed. The computed control signal is sent to UAV at 100Hz.

The dynamical system of UAV is subdivided into three simpler subsystems to reduce
the complexity and accelerate the learning process. Three feed-forward DFNNs are
used to learn the control mapping for each controlled axis: z, y and z, as depicted
in Fig. 2.5. From the dynamical model of UAV, it is possible to calculate that the
relative degree 7 = 2. According to (9.1) and (9.6), each DFNN has three inputs
(N; = 3) and one output (No = 1). In addition, after some heuristic analysis
and experimental trials, the architecture of the network is chosen to consist of one
fuzzification layer with three MFs (N = 3), and two fully connected hidden layers
(Np, = 2) with 64 neurons in each layer (Ng; = Ngo = 64) and with hyperbolic
tangent (tanh) activation functions. The inputs to DENN for the z-axis are the
state components relative to the z-axis, {z(k), u(k), z*(k + 2)}, and the output is
the desired pitch angle, {#*(k)}. Similarly, the inputs to DENN for the y-axis are
the state components relative to the y-axis, {y(k),v(k),y*(k + 2)}, and the output
is the desired roll angle, {¢*(k)}. Finally, the inputs to DFNN for the z-axis are
the errors and their time derivatives on the z-axis, {z(k),w(k), z*(k +2)}, and the

output is the desired vertical velocity, {w*(k)}.

The error type is an important term in the loss index, and, in the proposed approach,
it is chosen as the normalized squared error. The initialization algorithm is used to
bring the neural network to a stable region of the loss function, and, in the proposed
approach, it is selected as the random search. The training algorithm is the core
part of the training, and, in the proposed approach, the quasi-Newton method is

chosen for both offline and online training. The scaling factor & = 0.1 in (9.5).

Remark 9.4. The DFNN controllers with and without online learning consist of
three independent and parallel sub-networks for x, y and 2z axes to speed up the

learning.
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To prepare the training samples of the flight data, the system was controlled by
a conventional stable position controller alone. The current and past states were
saved as inputs, while the corresponding control signals was saved as the labelled
output. By using the PID controller, 100’000 instances have been collected in
the training dataset for each axis. This dataset is large enough for the trajectory
tracking application, however, the proposed method does not have any limitations
on the dataset size. The training data include circular and eight-shaped trajectories

on xy-, xz- and yz-planes with the reference speed of 1m/s.

The tracking of four circular trajectories with different working conditions (slow,
fast, near-ground and with payload) have been tested. The study cases are designed
in a way to exploit different components of UAV dynamics. Furthermore, the visual-
inertial algorithm for state estimation produces noisy output [117]. In order to
show the efficiency and efficacy of the DFNN-based controller with online learning,
it is compared with a well-tuned PID controller (used for the collection of training
samples), T1-FNN-based controller with Gaussian antecedent MFs and LM theory-
based update rules presented in Section 8.3, and I'T2-FNN-based controller with
elliptic antecedent MFs and SMC theory-based adaptation laws from [6], and

DFNNj controller without online training.

Remark 9.5. For real-time experiments, the inverse dynamics of the system is not
used to control the system, since, in real-world, it is difficult, and sometimes even

impossible, to estimate the exact inverse dynamics of the system.

9.4.1 Discussion

The first study case is the tracking of the slow circular trajectory with a radius
of 2m on the zy-plane at a velocity of 1m/s which has also been used during the
pre-training phase. This case study is a reference example where UAV operates in

its nominal conditions. The results for this study case are shown in Fig. 9.10.

The second study case is the tracking of the fast circular trajectory with a radius
of 2m on the zy-plane at a velocity of 2m/s. In this study case, the fast responses
of the controllers and the robustness of the visual-inertial state estimator to the

motion blur are verified. The results for this study case are shown in Fig. 9.11.
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The third study case is the tracking of the circular trajectory while flying at a height
of 0.2m. In this study case, the ground effect generates an external disturbance on
UAV. The results for this study case are shown in Fig. 9.12.

The fourth study case is the tracking of the circular trajectory while flying with a
payload (Odroid-C2 onboard computer on top and office scissors attached to the
front left arms) of 209g. In this study case, the parameters of the dynamical model
of UAV (mass and moments of inertia) are altered by the payload. The results for

this study case are shown in Fig. 9.13.

Experimental results for five controllers (PID, T1-FNN, IT2-FNN, DFNN, and
DENN) on four different circular trajectories (slow, fast, near-ground and with
payload) are illustrated in Figs. 9.10-9.13, respectively. It is possible to observe
from Figs. 9.10a-9.13a that DFNN-based controller with online training is able to
track more closely the reference trajectory. As visualized from Figs. 9.10b-9.13b,
DFNN-base controller has faster responses since it is able to estimate the evolution
of the system dynamics and compensate it. From Figs. 9.10c-9.13c, it is possible to
observe that DFNN-based controller with online training is able to learn the system

dynamics and decrease the tracking error on all tested trajectories.

For the statistical analysis of control performances, the experiments are repeated
five times for each controller-case combination for a total of 100 experiments under
quasi-same conditions. To compare the trajectory tracking performances, a box-plot
is presented in Fig. 9.14. It is possible to observe that on average the DFNN-
based controller with online learning outperforms other controllers on the tested
trajectories. It has to be emphasised that DFNN evolves online from the pre-trained
DFNNj during the learning process. Moreover, as expected, DFNN, has poor
performances in the cases which have not been used for its training. It is also
interesting to observe that the performances of the PID controller do not get worse
in case of near-ground and with payload trajectories, because derivative and integral
components can compensate for these disturbances. Furthermore, the FNN-based
controllers (T1-FNN and IT2-FNN) have similar performances for the slow, near-
ground and with payload trajectories because their fast learning capabilities can
compensate the disturbances coming from the ground effects and increased mass.
The maximum absolute error is lower for the online DFNN-based controller, even
for the cases unseen during the pre-training. Finally, DFNN-based controller with

online learning has the lowest variance of the error.
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Figure 9.10: Results for the slow circular trajectory at velocity of 1m/s.
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Figure 9.11: Results for the fast circular trajectory at velocity of 2m/s.
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Figure 9.12: Results for the near-ground circular trajectory at height of 0.2m.
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Figure 9.14: Tracking performances of five controllers in four scenarios.

As can be seen from Table 9.4, the DFNN-based controller with online learning
outperforms all tested controllers in all tested study cases in terms of MAE. Averaged
results from numerous experiments depict that the overall improvement of 51%,
59%, 53% and 51% in terms of MAE is achieved as compared to a well-tuned PID

controller for slow, fast, near-ground and with payload cases, respectively.

Nevertheless, the online DFNN-based controller can learn promptly the system
dynamics, the computing time is still the main drawback of this controller because
of the online back-propagation. The computing time is polynomially proportional
to the number of hidden layers and the number of neurons in each hidden layer,
i.e., O(Ng - N). Therefore, deeper is the network, more complex functions it
can learn, but more computational power it requires. The average experimental
computation time for DFNN with online back-propagation is around 9.4ms, while
for PID, T1-FNN, IT2-FNN and DFNN, without online learning this time is only
8us, 11us, 13us and 32us, respectively. However, 9.4ms is still an acceptable time

for real-time applications, which allows the controller to run at 100Hz.

Table 9.4: Comparison of different controllers in terms of MAE [m].

| Trajectory || PID | T1-FNN | IT2-FNN [ DFNN, | DFNN |
Slow 0.640 | 0.593 0.568 0.387 | 0.307
Fast 1710 | 1.182 1.265 1.204 | 0.704
Near-Ground || 0.638 0.609 0.601 0.497 0.299
With Payload [[ 0.620 |  0.555 0.546 0.570 | 0.306
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9.5 Conclusion

In this chapter, a novel approach is presented for the control of dynamical systems
that improves the system’s control performance online by combining deep learning
and fuzzy logic. The learning is subdivided into two phases: offline and online
training. During the offline training phase, a conventional controller performs a set
of trajectories and a batch of training samples is collected. Then, a DFNN-based
controller, DFNNj, is pre-trained on the collected data samples. However, DFNN,
cannot adapt to new operating conditions different from the pre-training cases;
therefore, online training is required. During the online training phase, DFNN-
based controller takes control of the system and adapts to improve the tracking
performance. The expert knowledge encoded into the rule-base, thanks to the
derived fuzzy mapping, provides the adaptation information to DFNN allowing the
online learning. Once DFNNs are trained, the experimental results show that the
proposed approach improves the performance by more than 50% when compared to
a conventional controller. The results of this study might open doors to wider use

of DFNN-based controllers in real-world control applications.
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Chapter 10

Conclusion

IN this thesis, a possible solution for an accurate trajectory following of UAVs in

uncertain and noisy environments is presented.

The investigation has started with T1-FLCs with different inference engines, namely
SFLC, Sta-NSFLC, Cen-NSFLC and Sim-NSFLC. Extensive simulation and ex-
perimental tests have shown that non-singleton FLCs are able to obtain better
control performances when compared to singleton FLCs, especially at higher flight
speeds which induce higher uncertainty and noise levels. Moreover, different input
fuzzification levels can achieve various capabilities for capturing input uncertainties.
In other words, the higher input fuzzification has more capability to handle higher-
level input noise. However, T1-FLCs can effectively handle only bounded levels of
uncertainty and noise, while real-world applications frequently have to deal with

high levels of uncertainty and multiple sources of noise.

There exist neither a systematic way to choose MF's to achieve better uncertainty
modelling capability nor an objective criterion to check its performance. A compar-
ative analysis is made in which IT2-FLCs are compared and contrasted to T1-FLCs
for modelling uncertainty. Elliptic MFs are unique amongst existing type-2 fuzzy
MF's because of the decoupled parameters for its support and width. The findings
say that IT2-FLCs with elliptic MFs have better performances when compared
to conventional PID controller and type-1 counterpart. However, the developed

IT2-FLCs are computationally slower than the traditional PID controller.
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Therefore, an alternative systematic approach to explicitly derive the mathematical
input-output relationships of T1-FLCs and IT2-FLCs has been presented. These
nonlinear closed-form relationships allowed to verify some important characteristics
of both T1-FLC and IT2-FLC, like symmetry, continuity and monotonicity. The
presented design method for I'T2-FLC has only one parameter of FOU to be selected,
i.e., aggressiveness parameter. By only modifying this parameter, I'T2-FLCs can
be designed in an easy manner to have more aggressive or smoother behaviour.
To prove these theoretical claims, the developed controllers have been tested in
simulation and experimental case studies for the way-points tracking control of UAV.
It has been shown that the theoretical claims and expectations match the results in
the case studies. However, one weakness of all FL.Cs is that the parameters of their

MFs have to be tuned to deal with uncertainties.

Another branch of artificial intelligence (AlI)-based controllers is ANN-based con-
troller which enables learning for the control of UAV in various challenging conditions.
A fast flight manoeuvre at speeds of 18m/s is performed to show the superior per-
formance of the proposed controller. While performing a pre-defined task, UAV
experiences a single motor failure, and the controller handles the failure ensuring
the safety of the mission as well as UAV. The model-free nature of the controller
helps in accurate trajectory tracking even for high-speed and agile manoeuvres.
The advantage of the proposed controller is that it does not need a well-tuned set of
PD gains as it learns online and improves the performance metrics while following
the trajectory. Moreover, the proposed controller is computationally light to be
implemented on the onboard computer of UAV. The real-time experiments are
carried out in the outdoor environment with the use of RTK-GPS for localization.
For all the phases of the considered scenario, the proposed controller outperforms
the conventional PID controllers. The average improvement of the ANN-based
controller is above 40%. However, common single-hidden-layer ANNs are not able

to learn the complete inverse dynamics of the system.

Given the ability of DNNs to generalise knowledge, a DNN-enhanced control
architecture has been proposed to improve the tracking performance of traditional
feedback controllers for any given desired trajectory. For the problem of transfer
learning, an online learning approach has been proposed to efficiently transfer a
DNN module trained on a source robot system to control a target robot system.

An expression of the online module for achieving exact tracking has been derived.
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Then, based on a linear system formulation, an approach for characterising system
similarity has been proposed. This approach was verified experimentally by applying
the proposed online learning approach to transfer a DNN inverse dynamics module
across two similar but different quadrotor platforms. On 10 arbitrary hand-drawn
trajectories, the DNN module of the source system reduces the tracking error of
the target system by an average of 46%. The incorporation of the online module
further reduces the tracking error and leads to an average of 74% error reduction.
These experimental results show that the proposed online learning and knowledge

transfer approach can efficaciously circumvent data recollection on the target robot.

Additionally, in this thesis, SMC and LM theory-based learning algorithms for in-
telligent FNN controllers are proposed for the control and stabilising of a quadrotor
UAV along a predefined trajectory in the presence of periodic wind gust conditions.
It was also demonstrated that proposed methods are capable to significantly reduce
the steady-state errors and overcome the periodic disturbances and existed uncer-
tainties which are generated by the lack of modelling. Simulations and experimental
results show that the combination of PD and FNN which is tuned by SMC and
LM algorithms gives a significantly lower tracking error than the conventional PD

controller when it works alone.

In the end, in this thesis, a novel approach has been proposed for the control of
dynamical systems to improve system’s control performances online by combining
deep learning and fuzzy logic. The learning is subdivided into two phases: offline
and online training. During the offline training phase, a conventional controller
performs a set of trajectories and a batch of training samples is collected. Then,
a DFNN-based controller, DFNNj, is pre-trained on the collected data samples.
However, DFNN, cannot adapt to new operating conditions different from the
pre-training cases; therefore, online training is required. During the online training
phase, DFNN-based controller takes control of the system and adapts to improve the
tracking performance. The expert knowledge encoded into the rule-base, thanks to
the derived fuzzy mapping, provides the adaptation information to DENN allowing
the online learning. Once DFNNs are trained, the experimental results show that
the proposed approach improves the performance by more than 50% when compared
to a conventional controller. This approach might open new doors to a wider use of

DFNN-based controllers in real-world control applications.
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10.1 Future Work

In the future, the proposed adaptive controllers can be applied to solve some new
real-world problems in which they can obtain better results when compared to
classical approaches. A possible class of applications is the one where the system
dynamics varies drastically, e.g., cooperative aerial transportation with multirotor
UAVs. In the cooperative aerial transportation, several issues, such as reciprocal
interaction caused by multiple UAVs, should be considered. Besides, the physical
properties of the carried item may be either unknown, e.g., mass or the moments of
inertia, or variable, e.g., the COM of an item containing a fluid. Also, during the
transportation, aerial robots might be affected by unknown external disturbances,

e.g., wind gust which is exceptionally strong and unpredictable on high altitudes.

At the same time, autonomous drone racing is an exciting case study that aims to
develop innovative ways of solving complex problems. In autonomous drone racing,
the goal is to pass with UAV through a sequence of gates in a minimum amount
of time while avoiding collisions in an unknown environment by relying only on
onboard sensors and onboard computation. Thus, what makes drone racing such
an interesting challenge is the cumulative complexity of each sub-problem to be

solved, such as perception, localisation, path planning and, of course, control.

On the other hand, an adaptive controller can be designed to consider the character-
istics of the controlled system and working conditions by adjusting the aggressiveness
parameter of fuzzy mapping. For example, based on the uncertainty and noise

levels, FLC can be configured to operate in a smoother or more aggressive mode.

In addition, it has been demonstrated that generalised T2-FLCs have enhanced
capabilities of noise rejection. However, they are computationally complex and
expensive for real-time applications. One of the possible future directions can focus

on the management of this complexity in order to decrease it.

In the end, deep reinforcement learning is becoming one of the most popular Al-
based techniques since it resembles the human way of learning. A mobile robot, e.g.,
multirotor UAV, can be considered as an agent which performs actions and receives
rewards. This paradigm can be employed in many possible control applications,

e.g., learning control in an unknown environment.



Appendix A

Attitude of Rigid Body

The rotation of a rigid body in space can be parametrized by using three Euler angles:

roll (¢), pitch () and yaw (¢)). By considering right-hand oriented coordinate

frame, the three single rotations are described by:

e R(z, ¢) is the rotation around z-axis by ¢;

e R(y,0) is the rotation around y-axis by 6;

e R(z,7) is the rotation around z-axis by .

They are represented by:

R(QZ, ¢) =

R(y,0) =

and

R<Z>¢) =

1 0 0
0 cos¢p —sing
0 sing cos¢

cos@ 0 sinf
0 1 0

—sinf 0 cos@

cosy —siny 0-
siny cosy 0
0 0 1
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The complete rotation matrix is the product of three successive rotations around

the world fixed z, y and x axes defined by (A.1)-(A.3):

R(,0,v) = R(z,¢)R(y, 0)R(z, ¢)
coscosf cossingsinh — cospsiny  sin ¢ sin ) + cos ¢ cos i sin @
= |cosfsiny cos¢cosy +singsinysinf cos ¢siny sinf — cos Y sin @
—sin6 cos fsin ¢ cos ¢ cos 6

(A.4)

A.1 Transformation of Angular Velocities

The idea is to consider small changes in each Euler angle, and determine the effects
on the rotation vector. To get the angular rates in the proper frames, the z-axis
must be rotated into the inertial frame, the y-axis must be rotated by R (z, ¢)
into the first frame, and the z-axis must be rotated by R (z,¢)R”(y, 0) into the
second frame. The relationship between the body-fixed angular velocity vector wg
and the rate of change of the Euler angles w can be determined by resolving the

Euler rates into the body-fixed coordinate frame:

b 0 0
wp= 0| +R"(z,¢) |6 + R (2,9)R"(y,0) |0
0 0 '
- ’ (A.5)
1 0 —sin@

= |0 cos¢ singcosh| w.

0 —sing cos¢cost

Taking the inverse of (A.5) gives

1 singtanf cos¢tan6
w= [0 cos¢ —sing | wp. (A.6)

0 singsec cososect



Appendix B

Hat and Vee Mapping

T
Let v = [vl Vo ’U3:| be a vector in R?. Then, the hat map [v]" can be defined as

a mathematical operator R?* — SO(3):

0 —7Vs3 V2
VM =1wv 0 —ul. (B.1)
—vy U 0

V] = [v]". (B.2)
0 —Mm21 M3
Let M = | moy 0  —mag| be a skew-symmetric matrix in SO(3). Then, the
—Mig M3z 0

vee map [M]" can be defined as a mathematical operator SO(3) — R*:

[M]v: [m?,z mi3 m21]T- (B.3)

The vee map is the inverse of the hat map, i.e., [[V]A] ¥ = v. On the other side, the

hat map is the inverse of the vee map, i.e., HM]V] "= M.
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