
Learning Control of Unmanned

Aerial Vehicles Using Artificial

Intelligence-Based Methods

Andriy Sarabakha

School of Mechanical and Aerospace Engineering

A thesis submitted to the Nanyang Technological University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

2020

http://www.ntu.edu.sg
mailto:andriyukr@gmail.com
http://www.mae.ntu.edu.sg

Statement of Originality

I hereby certify that the intellectual content of this thesis is the

product of my original research work and has not been submitted for

a higher degree to any other University or Institution.

02-01-2020
. .

Date Andriy Sarabakha

Supervisor Declaration Statement

I have reviewed the content and presentation style of this thesis and

declare it is free of plagiarism and of sufficient grammatical clarity

to be examined. To the best of my knowledge, the research and

writing are those of the candidate except as acknowledged in the

Author Attribution Statement. I confirm that the investigations were

conducted in accord with the ethics policies and integrity standards

of Nanyang Technological University and that the research data are

presented honestly and without prejudice.

. .

Date Assoc Prof Domenico Campolo

8 Jan 2020

Co-Supervisor Declaration Statement

I have reviewed the content and presentation style of this thesis and

declare it is free of plagiarism and of sufficient grammatical clarity

to be examined. To the best of my knowledge, the research and

writing are those of the candidate except as acknowledged in the

Author Attribution Statement. I confirm that the investigations were

conducted in accord with the ethics policies and integrity standards

of Nanyang Technological University and that the research data are

presented honestly and without prejudice.

. .

Date Assoc Prof Erdal Kayacan

04/01/2020

Authorship Attribution Statement

This thesis contains material from ten papers published in the following

peer-reviewed journals / from papers accepted at conferences in which

I am listed as an author.

Chapter 2 is partially published as A. Sarabakha, C. Fu, E. Kayacan, and T.
Kumbasar, “Type-2 Fuzzy Logic Controllers Made Even Simpler: From Design to
Deployment for UAVs,” IEEE Transactions on Industrial Electronics, vol. 65, no.
6, pp. 5069–5077, June 2018. doi:10.1109/TIE.2017.2767546. The contributions of
the co-authors are as follows:

� I prepared the control algorithms and prepared the manuscript draft.
� Dr Fu assisted during the laboratory work.
� A/Prof Kayacan edited the manuscript draft.
� A/Prof Kumbasar suggested the research area.

Chapter 3 is published as C. Fu, A. Sarabakha, E. Kayacan, C. Wagner, R. John,
and J. M. Garibaldi, “Input Uncertainty Sensitivity Enhanced Non-Singleton
Fuzzy Logic Controllers for Long-Term Navigation of UAVs,” IEEE/ASME
Transactions on Mechatronics, vol. 23, no. 2, pp. 725–734, Apr. 2018.
doi:10.1109/TMECH.2018.2810947, C. Fu, A. Sarabakha, E. Kayacan, C. Wagner,
R. John, and J. M. Garibaldi, “Novel, Similarity-Based Non-Singleton Fuzzy Logic
Control for Improved Uncertainty Handling in Quadrotor UAVs,” in 2017 IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE), Naples, Italy, 2017, pp.
1–6. doi:10.1109/FUZZ-IEEE.2017.8015440, and C. Fu, A. Sarabakha, E. Kayacan,
C. Wagner, R. John, and J. M. Garibaldi, “A Comparative Study on the Control of
Quadcopter UAVs by Using Singleton and Non-Singleton Fuzzy Logic Controllers,”
2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Vancou-
ver, Canada, 2016, pp. 1023–1030. doi:10.1109/FUZZ-IEEE.2016.7737800. The
contributions of the co-authors are as follows:

� I coded the control algorithms and assisted during the laboratory work.
� Dr Fu prepared the manuscript’ drafts.
� A/Prof Kayacan suggested the research area and revised the manuscript.
� A/Prof Wagner provided the initial ideas and revised the manuscript draft.
� Prof John revised the manuscript.
� Prof Garibaldi revised the manuscript.

Chapter 4 is partially published as E. Kayacan, A. Sarabakha, S. Coupland, R.
John, M. A. Khanesar, “Type-2 Fuzzy Elliptic Membership Functions for Mod-
eling Uncertainty,” Engineering Applications of Artificial Intelligence, vol. 70,
pp. 170–183, Apr. 2018. doi:10.1016/j.engappai.2018.02.004. The contributions of
the co-authors are as follows:

https://doi.org/10.1109/TIE.2017.2767546
https://doi.org/10.1109/TIE.2017.2767546
https://doi.org/10.1109/TIE.2017.2767546
https://doi.org/10.1109/TIE.2017.2767546
https://doi.org/10.1109/TMECH.2018.2810947
https://doi.org/10.1109/TMECH.2018.2810947
https://doi.org/10.1109/TMECH.2018.2810947
https://doi.org/10.1109/TMECH.2018.2810947
https://doi.org/10.1109/TMECH.2018.2810947
https://doi.org/10.1109/FUZZ-IEEE.2017.8015440
https://doi.org/10.1109/FUZZ-IEEE.2017.8015440
https://doi.org/10.1109/FUZZ-IEEE.2017.8015440
https://doi.org/10.1109/FUZZ-IEEE.2017.8015440
https://doi.org/10.1109/FUZZ-IEEE.2017.8015440
https://doi.org/10.1109/FUZZ-IEEE.2016.7737800
https://doi.org/10.1109/FUZZ-IEEE.2016.7737800
https://doi.org/10.1109/FUZZ-IEEE.2016.7737800
https://doi.org/10.1109/FUZZ-IEEE.2016.7737800
https://doi.org/10.1109/FUZZ-IEEE.2016.7737800
https://doi.org/10.1016/j.engappai.2018.02.004
https://doi.org/10.1016/j.engappai.2018.02.004
https://doi.org/10.1016/j.engappai.2018.02.004

viii

� I performed all the laboratory work.
� A/Prof Kayacan prepared the manuscript draft.
� Dr Coupland revised the manuscript.
� Prof John revised the manuscript.
� Dr Khanesar edited the manuscript.

Chapter 5 is published as A. Sarabakha, C. Fu, and E. Kayacan, “Intuit Before
Tuning: Type-1 and Type-2 Fuzzy Logic Controllers,” Applied Soft Computing,
vol. 81, pp. 105495, Aug. 2019. doi:10.1016/j.asoc.2019.105495, and A. Sarabakha,
C. Fu, and E. Kayacan, “Double-Input Interval Type-2 Fuzzy Logic Controllers:
Analysis and Design,” in 2017 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE), Naples, Italy, 2017, pp. 1–6. doi:10.1109/FUZZ-IEEE.2017.8015485.
The contributions of the co-authors are as follows:

� I developed the research idea and prepared the manuscript drafts.
� Dr Fu assisted during the laboratory work.
� A/Prof Kayacan suggested the research area and edited the manuscript draft.

Chapter 6 is published as S. Patel, A. Sarabakha, D. Kircali, and E. Kayacan,
“An Intelligent Hybrid Artificial Neural Network-Based Approach for Control of
Aerial Robots,” Journal of Intelligent & Robotic Systems, pp. 1–12, May 2019.
doi:10.1007/s10846-019-01031-z. The contributions of the co-authors are as follows:

� I developed the control algorithms.
� Mr Patel performed experiments and prepared the manuscript draft.
� Mr Kircali prepared the experimental setup and performed experiments.
� A/Prof Kayacan suggested the research area and revised the manuscript.

Chapter 7 is published as S. Zhou, A. Sarabakha, E. Kayacan, M. K. Helwa,
and A. P. Schoellig, “Knowledge Transfer Between Robots with Similar Dynamics
for High-Accuracy Impromptu Trajectory Tracking,” in 2019 European Control
Conference (ECC), Naples, Italy, 2019, pp. 1–8. doi:10.23919/ECC.2019.8796140.
The contributions of the co-authors are as follows:

� I provided the initial ideas.
� Ms Zhou performed the laboratory work and prepared the manuscript draft.
� A/Prof Kayacan revised the manuscript.
� Dr Helwa edited the manuscript draft.
� A/Prof Schoellig suggested the research area.

Chapter 8 is published as A. Sarabakha, N. Imanberdiyev, E. Kayacan,
M. A. Khanesar, and H. Hagras, “Novel Levenberg–Marquardt Based Learning Algo-
rithm for Unmanned Aerial Vehicles,” Information Sciences, vol. 417, pp. 361–380,
Nov. 2017. doi:10.1016/j.ins.2017.07.020. The contributions of the co-authors are
as follows:

� I coded the control algorithms and prepared the manuscript draft.
� Mr Imanberdiyev performed experiments and prepared the manuscript draft.

https://doi.org/10.1016/j.asoc.2019.105495
https://doi.org/10.1016/j.asoc.2019.105495
https://doi.org/10.1016/j.asoc.2019.105495
https://doi.org/10.1109/FUZZ-IEEE.2017.8015485
https://doi.org/10.1109/FUZZ-IEEE.2017.8015485
https://doi.org/10.1109/FUZZ-IEEE.2017.8015485
https://doi.org/10.1109/FUZZ-IEEE.2017.8015485
https://doi.org/10.1007/s10846-019-01031-z
https://doi.org/10.1007/s10846-019-01031-z
https://doi.org/10.1007/s10846-019-01031-z
https://doi.org/10.1007/s10846-019-01031-z
https://doi.org/10.23919/ECC.2019.8796140
https://doi.org/10.23919/ECC.2019.8796140
https://doi.org/10.23919/ECC.2019.8796140
https://doi.org/10.23919/ECC.2019.8796140
https://doi.org/10.1016/j.ins.2017.07.020
https://doi.org/10.1016/j.ins.2017.07.020
https://doi.org/10.1016/j.ins.2017.07.020
https://doi.org/10.1016/j.ins.2017.07.020

ix

� A/Prof Kayacan suggested the research area and edited the manuscript draft.
� Dr Khanesar provided the theoretical framework.
� Prof Hagras revised the manuscript.

Chapter 9 is published as A. Sarabakha, and E. Kayacan, “Online Deep Fuzzy Learn-
ing for Control of Nonlinear Systems Using Expert Knowledge,” IEEE Transactions
on Fuzzy Systems. doi:10.1109/TFUZZ.2019.2936787, and A. Sarabakha, and E.
Kayacan, “Online Deep Learning for Improved Trajectory Tracking of Unmanned
Aerial Vehicles Using Expert Knowledge,” in 2019 IEEE International Conference
on Robotics and Automation (ICRA), Montreal, Canada, 2019, pp. 7727–7733.
doi:10.1109/ICRA.2019.8794314. The contributions of the co-authors are as follows:

� I performed the laboratory work and prepared the manuscript drafts.
� A/Prof Kayacan revised the manuscript drafts.

02-01-2020

. .

Date Andriy Sarabakha

https://doi.org/10.1109/TFUZZ.2019.2936787
https://doi.org/10.1109/TFUZZ.2019.2936787
https://doi.org/10.1109/TFUZZ.2019.2936787
https://doi.org/10.1109/ICRA.2019.8794314
https://doi.org/10.1109/ICRA.2019.8794314
https://doi.org/10.1109/ICRA.2019.8794314
https://doi.org/10.1109/ICRA.2019.8794314
https://doi.org/10.1109/ICRA.2019.8794314

Abstract

In recent years, many research activities have focused on the developments for

unmanned aerial vehicles (UAVs) due to their usefulness in providing cost-effective

solutions to dangerous, dirty and dull tasks. In many applications, it is crucial for

UAVs to be able to fly autonomously in uncertain environments under variable

operating conditions. In such circumstances, an intelligent capability of the flight

controller is a must rather than a choice. Model-free controllers propose alternative

solutions to the model-based controllers without requiring a precise system’s model

which is often either unavailable or time-consuming to obtain. One branch of

model-free methods is composed by fuzzy logic controllers (FLCs) due to their

capability of delivering excellent control in the presence of uncertainties. However,

one weakness of FLCs is that their parameters have to be tuned to deal efficiently

with uncertainties. On the other hand, neural networks are computing models which

progressively improve their performance by learning from training examples. Hence,

artificial neural networks (ANNs) and deep neural networks (DNNs) propose learning

approaches to enhance control strategies. Nevertheless, the main disadvantage of

neural networks is that their inner workings are difficult to interpret. The limitations

of fuzzy logic and neural networks were a driving force behind the creation of hybrid

systems where the combination of DNN and FLC can overcome the drawbacks of

each individual method.

This thesis focuses on the aforementioned artificial intelligence-based control meth-

ods that enable UAVs to accurately track 3D trajectories. The investigation starts

from the simplest static type-1 FLC, through interval type-2 FLC, to the most

efficient novel fuzzy mapping-based controllers. In this thesis, it was demonstrated

that the analytical representation of the fuzzy mapping facilitates the tuning of the

parameters in FLCs. Next, the controllers based on ANNs and DNNs with learning

capabilities were investigated. In this thesis, it was verified experimentally that the

proposed approaches can improve real-time control performance. Finally, a novel

deep fuzzy neural network framework which profoundly fuses DNN and FLC for

online training was proposed and validated under a variety of operating conditions.

xi

“A helicopter is a mechanical engineer’s dream and an aerodynamicist’s nightmare.”

—John Watkinson, British teacher

“If you are in trouble anywhere, an airplane can fly over and drop flowers, but a

helicopter can land and save your life.”

—Igor Sikorsky, Ukrainian American aviation pioneer

“Once you have tasted flight, you will forever walk the earth with your eyes turned

skyward, for there you have been, and there you will always long to return.”

—Leonardo da Vinci, Italian engineer, scientist and painter

Acknowledgements

This thesis would not have been possible without the help and support of many

people. I would like to thank all those who have inspired and assisted me during

my PhD period.

First of all, I would like to thank my family for their continuous and priceless

support. To my parents, without you it would not have been possible to achieve

this great goal. To my sister, Olena, thank you for supporting me all this time and

checking all my papers. To my girlfriend, Ana, you have always encouraged the

best of me and I will be forever grateful.

Moreover, I would like to thank my supervisor, Prof. Erdal Kayacan, for selecting

me as a PhD student, providing me with motivating academic guidance and giving

me the freedom to pursue many interesting ideas. I would also like to thank my

supervisor, Prof. Domenico Campolo, for the appreciated advice and feedback. This

thesis is the result of many fruitful collaborations and scientific discussions with

Prof. Changhong Fu, Prof. Yiqun Dong, Prof. Robert John, Prof. Christian Wagner,

Prof. Tufan Kumbasar, Prof. Angela Schoellig and Prof. Giuseppe Loianno. Many

thanks to my colleagues, Nursultan Imanberdiyev, Mohit Mehndiratta, Efe Camci,

Ilker Bozcan, SiQi Zhou and many others, for insightful conversations. I would

like to extend my gratitude to Dogan Kircali and Siddharth Patel for technical

discussions and practical suggestions which have helped me to improve the quality

of my work. During my time at NTU, I learned a lot, gathered many valuable

experiences, and had much fun time. Thus, I am grateful to all the amazing people

who contributed to any of those things. Last but not least, I would like to thank

the examiners of my thesis who gave me very detailed and useful comments.

Singapore,

June 2020 Andriy

xiii

Contents

Abstract xi

List of Figures xix

List of Tables xxiii

List of Symbols xxv

List of Acronyms xxix

I Introduction and Background 1

1 Introduction 3

1.1 Related Works . 6

1.2 Contribution . 9

1.3 Outline . 10

2 Problem Definition 13

2.1 Nonlinear Systems . 14

2.1.1 Internal Uncertainties . 15

2.1.2 External Disturbance . 16

2.1.3 Noisy Measurement . 16

2.2 Multicopter Unmanned Aerial Vehicles 17

2.2.1 Multicopter Unmanned Aerial Vehicle’s Dynamics 17

2.2.1.1 X4 Quadcopter . 22

2.2.1.2 Y6 Coaxial Hexacopter 24

2.2.2 Control Scheme . 27

2.2.2.1 Position Control 27

2.2.2.2 Velocity Control 28

2.2.2.3 Attitude Control 29

2.2.2.4 Motors Speed Control 29

2.2.2.5 Real-World Control Scheme 29

xv

xvi CONTENTS

II Fuzzy Logic-Based Control 31

3 Type-1 Fuzzy Logic-Based Control 33

3.1 Mathematical Preliminaries . 34

3.2 Singleton Fuzzy Logic Control . 38

3.3 Non-Singleton Fuzzy Logic Control 38

3.3.1 Standard Non-Singleton Fuzzy Logic Control 39

3.3.2 Centroid Non-Singleton Fuzzy Logic Control 40

3.3.3 Similarity Non-Singleton Fuzzy Logic Control 41

3.4 Simulation Results . 42

3.4.1 Sources of Uncertainties . 42

3.4.2 Discussion . 43

3.5 Experimental Results . 44

3.5.1 Monocular Visual-Inertial SLAM Performance 45

3.5.2 Discussion . 47

3.6 Conclusion . 48

4 Interval Type-2 Fuzzy Logic-Based Control 49

4.1 Mathematical Preliminaries . 50

4.2 Experimental Results . 54

4.2.1 Setup . 54

4.2.2 Trajectory . 54

4.2.3 Discussion . 55

4.3 Conclusion . 57

5 Fuzzy Mapping-Based Control 59

5.1 Mathematical Preliminaries . 60

5.2 Type-1 Fuzzy Mapping . 61

5.2.1 Derivation of Fuzzy Mapping for DI-T1-FLS 62

5.2.2 Analysis of Fuzzy Mapping for DI-T1-FLS 62

5.3 Interval Type-2 Fuzzy Mapping . 65

5.3.1 Derivation of Fuzzy Mapping for DI-IT2-FLS 65

5.3.2 Analysis of Fuzzy Mapping for DI-IT2-FLS 68

5.4 Simulation Results . 72

5.4.1 Trajectory . 72

5.4.2 Discussion . 73

5.5 Experimental Results . 74

5.5.1 Trajectory . 74

5.5.2 Discussion . 75

5.6 Conclusion . 80

CONTENTS xvii

III Neural Network-Based Control 81

6 Artificial Neural Network-Based Control 83

6.1 Mathematical Preliminaries . 84

6.2 Sliding Mode Control-Based Learning 87

6.3 Simulation Results . 90

6.4 Experimental Results . 91

6.4.1 Fast and Agile Flight . 92

6.4.2 Motor Failure . 96

6.5 Conclusion . 99

7 Deep Neural Network-Based Control 101

7.1 Mathematical Preliminaries . 102

7.2 Transfer Learning . 103

7.2.1 System Similarity . 106

7.3 Simulation Results . 109

7.3.1 Discussion . 110

7.4 Experimental Results . 112

7.4.1 Discussion . 113

7.5 Conclusion . 115

IV Fuzzy Neural Network-Based Control 117

8 Neural Fuzzy-Based Control 119

8.1 Mathematical Preliminaries . 120

8.2 Sliding Mode Control-Based Learning 122

8.3 Levenberg-Marquardt-Based Learning 126

8.4 Simulation Results . 127

8.4.1 Discussion . 129

8.5 Experimental Results . 132

8.5.1 Discussion . 132

8.6 Conclusion . 134

9 Deep Fuzzy Neural Network-Based Control 135

9.1 Mathematical Preliminaries . 136

9.2 Network Training . 137

9.2.1 Offline Pre-Training . 137

9.2.2 Online Training . 138

9.3 Simulation Results . 145

9.3.1 Discussion . 146

9.4 Experimental Results . 149

9.4.1 Discussion . 150

9.5 Conclusion . 154

xviii CONTENTS

V Final Remarks 155

10 Conclusion 157

10.1 Future Work . 160

A Attitude of Rigid Body 161

A.1 Transformation of Angular Velocities 162

B Hat and Vee Mapping 163

List of Author’s Publications 165

Bibliography 169

List of Figures

1.1 Schematic overview of this thesis. 11

2.1 UAVs configurations with their references frames. 17

2.2 The quadcopter concept. The length of the arrows is proportional to
the corresponding forces and torques. 23

2.3 The coaxial hexacopter concept. The length of the arrows is propor-
tional to the corresponding forces and torques. 25

2.4 Block diagram of the control system for a multicopter UAV. 27

2.5 Block diagram of the position controller for a multicopter UAV. . . 28

2.6 Architecture of the real-world implementation of the control scheme
for UAV. 30

3.1 Structure of the type-1 fuzzy logic system. 34

3.2 ”Negative” (N), ”zero” (Z) and ”positive” (P) FSs represented by
three Gaussian type-1 MFs. 35

3.3 ”Big negative” (BN), ”small negative” (SN), ”zero” (Z), ”small posi-
tive” (SP) and ”big positive” (BP) FSs represented by five singleton
MFs. 35

3.4 Structure of a triple-input type-1 fuzzy PID controller. 37

3.5 Singleton and non-singleton prefiltering. 38

3.6 Fuzzification in NSFLS. 39

3.7 Examples of NSFLS prefiltering with standard, centroid-based and
similarity-based prefilters. 39

3.8 Difference of NSFLS prefiltering with standard and centroid-based
prefilters. 40

3.9 Difference of NSFLS prefiltering with standard, centroid-based and
similarity-based prefilters. 41

3.10 Trajectory tracking under three different levels of noise (σN = 0.0,
σN = 0.5 and σN = 1.0) with the same level of fuzzifier (σF = 1.0). . 43

3.11 Control performances of Sta-NSFLC, Cen-NSFLC and Sim-NSFLC. 44

3.12 SLAM performances under different UAV flight speeds. 45

3.13 SLAM results with maximum flight speed 2.0m/s. 46

3.14 Control performances of four controllers (PID, SFLC, Sta-NSFLC
and Cen-NSFLC) in four different scenarios. 47

3.15 Trajectory following performances of all controllers in Test 4. 48

3.16 Euclidean error evolution of all controllers in Test 4. 48

xix

xx LIST OF FIGURES

4.1 Structure of the type-2 fuzzy logic system. 50

4.2 ”Negative” (N), ”zero” (Z) and ”positive” (P) FSs represented by
three elliptic interval type-2 MFs. 51

4.3 Structure of a double-input single-output interval type-2 fuzzy PD
controller. 53

4.4 Velocity profile of the desired trajectory. 55

4.5 3D trajectory tracking by five different controllers. 56

4.6 Projection of trajectory tracking along x, y and z axes by five different
controllers. 56

4.7 Euclidean error of different controllers. 57

5.1 ”Negative” (N), ”zero” (Z) and ”positive” (P) FSs represented by
three triangular type-1 MFs. 61

5.2 Fuzzy surface generated by DI-T1-FLS. 63

5.3 ”Negative” (N), ”zero” (Z) and ”positive” (P) FSs represented by
three triangular interval type-2 MFs. 65

5.4 Three regions of DI-IT2-FLC FM and two contours between these
regions. 66

5.5 Relation between aggressiveness of ϕIT2(σ) and α. 68

5.6 Fuzzy surface generated by DI-IT2-FLS for different values of α. . . 69

5.7 Trajectory tracking of DI-IT2-FPD position controllers with different
PSs. 73

5.8 Trajectory tracking of different DI-IT2-FPD controllers in absence
of wind. 75

5.9 Trajectory tracking of three different position controllers in presence
of wind. 77

5.10 Box-plot of the tracking performances of six different controllers in
presence of wind. 78

6.1 Structure of the proposed artificial neural network organised in input
layer with two neurons, hidden layers with NH + 1 neurons, and
output layer with one neuron. 85

6.2 Control scheme: ANN in parallel with PD controller. 86

6.3 Real-time trajectory tracking of the UAV. 93

6.4 Top view and tracking error of the considered controllers. 93

6.5 Ground speed and acceleration of the considered controllers. 94

6.6 Control signals of ANN for x, y and z axes. 95

6.7 Position tracking performance of various controllers 96

6.8 Top view comparison of various controllers 97

6.9 Tracking error comparison of various controllers 98

6.10 Ground speed and acceleration of different controllers 98

6.11 Control output of ANN controller for x, y, and z axes 99

LIST OF FIGURES xxi

7.1 Structure of DNN organised in input layer with NI neurons, NL

fully-connected hidden layers with NH,h, h ∈ {1, . . . , NL}, neurons
in each layer, and output layer with NO neurons. 102

7.2 Block diagram of the DNN-enhanced control architecture with online
learning module (solid lines represent calculated quantities, dashed
lines represent measured quantities, dotted lines represent estimated
quantities). 104

7.3 Plot of the error prediction from the online learning module. 111

7.4 Output of the target system controlled by three different approaches. 111

7.5 Trajectory tracking of the target system in the xz-plane by three
control strategies. 113

7.6 Position trajectories of the target system controlled by three control
strategies. 114

7.7 Tracking performance of the target system on 10 hand-drawn trajec-
tories. 114

8.1 Control scheme: FNN in parallel with PD controller. 121

8.2 Trajectory tracking of different FNN position controllers in presence
of wind. 129

8.3 Control signals for x, y and z axes generated by PD and SMC-FNN. 130

8.4 Control signals for x, y and z axes generated by PD and LM-FNN. 131

8.5 Euclidean MSE of different FNN position controllers in presence of
wind. 131

8.6 Trajectory tracking for vw = 2m/s. 132

8.7 Euclidean error with wind gust vw = 2m/s. 133

8.8 Control signals for x, y and z axes generated by PD and SMC-FNN. 134

8.9 Control signals for x, y and z axes generated by PD and LM-FNN. 134

9.1 Structure of DFNN organised in input layer with NI neurons, fuzzi-
fication layer with (NI × NF) neurons, NL fully-connected hidden
layers with NH,h, h ∈ {1, . . . , NL}, neurons in each layer, and output
layer with NO neurons. 136

9.2 Block diagrams of the offline pre-training of DFNN by conventional
controller (solid lines represent calculated quantities, dashed lines
represent measured quantities, dotted lines represent estimated quan-
tities). 138

9.3 Block diagrams of the online training of DFNN by FLS (solid lines
represent calculated quantities, dashed lines represent measured
quantities, dotted lines represent estimated quantities). 139

9.4 Possible evolution of the controlled dynamical system. The system
can diverge (red curves), converge (blue curves), it can have a steady
error (purple lines), or the error can be zero (green line). 140

9.5 ”Big decrease” (BD), ”small decrease” (SD), ”no change” (NC), ”small
increase” (SI) and ”big increase” (BI) consequent FSs for the update
of the control signal represented by five singleton MFs. 141

xxii LIST OF FIGURES

9.6 Performances on the nominal system in (9.17). 148

9.7 Performances on the system with internal uncertainties in (9.18). . . 148

9.8 Performances on the system with external disturbance in (9.19). . . 148

9.9 Performances on the system with noisy measurements in (9.20). . . 148

9.10 Results for the slow circular trajectory at velocity of 1m/s. 152

9.11 Results for the fast circular trajectory at velocity of 2m/s. 152

9.12 Results for the near-ground circular trajectory at height of 0.2m. . . 152

9.13 Results for the circular trajectory with payload of 209g. 152

9.14 Tracking performances of five controllers in four scenarios. 153

List of Tables

3.1 A typical 9 rules rule-base of FLC. 36

3.2 A typical 27 rules rule-base of FLC. 36

4.1 Comparison results for the error from different controllers. 57

5.1 Properties of different controllers. 74

5.2 Properties of DI-IT2-FPD controllers in absence of wind. 76

5.3 Properties of DI-IT2-FPD controllers in presence of wind. 77

5.4 Characteristics of different types of controllers. 79

6.1 Comparison of computation times and mean Euclidean error for
different number of neurons in hidden layer. 90

6.2 Statistical comparison of three controllers. 92

6.3 MAE, maximum speed and maximum acceleration achieved for the
considered controllers. 95

6.4 MAE, maximum speed and maximum acceleration achieved for the
considered controllers. 99

8.1 Average Euclidean RMSE for considered controllers [m]. 133

9.1 Rule-base for the updates of uj(k). 140

9.2 Asymptotic analysis of different controllers. 144

9.3 Comparison of different controllers in terms of MAE [m]. 147

9.4 Comparison of different controllers in terms of MAE [m]. 153

xxiii

List of Symbols

Unless stated differently, the conventions are defined as follows:

� scalars are represented by lower case or upper case italic letters, e.g., s or S;

� vectors are represented by lower case bold letters, e.g., v;

� matrixes are represented by upper case bold letters, e.g., M;

� desired values are indicated with star superscripts, e.g., a∗;

� estimated values are indicated with hat overline, e.g., â;

� predicted values are indicated with tilde overline, e.g., ã;

� measured values are indicated with bar overline, e.g., ā.

A antecedent fuzzy set

a linear acceleration in world frame [m/s2]

aB linear acceleration in body frame [m/s2]

b propeller’s thrust coefficient [N · s2]

C consequent fuzzy set

d propeller’s drag coefficient [N ·m · s2]

ep position error [m]

eR attitude error [rad]

ev velocity error [m/s]

eω angular velocity error [rad/s]

xxv

List of Symbols LIST OF SYMBOLS

FB body reference frame

FW world fixed reference frame

fe external forces [N]

fi force generated by the ith motor [N]

g gravitational acceleration constant [m/s2]

I inertia matrix [kg ·m2]

I input to neural network

Ix moment of inertia about x-axis [kg ·m2]

Iy moment of inertia about y-axis [kg ·m2]

Iz moment of inertia about z-axis [kg ·m2]

k time step

l arm length [m]

m mass [kg]

ND number of data samples

NH number of neurons in the hidden layer

NI number of system’s inputs

NM number of UAV’s motors

NO number of system’s outputs

NR number of rules

NS number of system’s states

O output from neural network

p position [m]

R rule in the rule-base

R rotation matrix

R rule-base

r relative degree of a system

S similarity factor

T transformation matrix

T thrust force [N]

t time [s]

u control input to the system

List of Symbols xxvii

v linear velocity in world frame [m/s]

vB linear velocity in body frame [m/s]

vx linear velocity in world x-axis [m/s]

vy linear velocity in world y-axis [m/s]

vz linear velocity in world z-axis [m/s]

W weights in the neural network

x state of the system

x position along world frame x-axis [m]

y output from the system

y position along world frame y-axis [m]

z position along world frame z-axis [m]

α learning rate

ε aggressiveness factor

θ pitch angle [rad]

θ attitude [rad]

Σ fuzzy input set

σ crisp inputs to FLS

τ e external torques [N ·m]

τi torque generated by the ith motor [N ·m]

τθ pitch torque in body frame [N ·m]

τφ roll torque in body frame [N ·m]

τψ yaw torque in body frame [N ·m]

Φ fuzzy output set

φ roll angle [rad]

ϕ crisp outputs from FLS

ψ yaw angle [rad]

Ω speed of the motors [rad/s]

ω angular velocity in world frame [rad/s]

ωB angular velocity in body frame [rad/s]

ωi speed of the ith motor [rad/s]

List of Acronyms

AI Artificial Intelligence

ANN Artificial Neural Network

BIBS Bounded-Input Bounded-State

BIBO Bounded-Input Bounded-Output

COM Center Of Mass

CPU Central Processing Unit

DFNN Deep Fuzzy Neural Network

DNN Deep Neural Network

DI-IT2-FLC Double-Input IT2-FLC

DI-IT2-FLS Double-Input IT2-FLS

DI-IT2-FPD Double-Input Interval Type-1 Fuzzy PD

DI-T1-FLC Double-Input T1-FLC

DI-T1-FLS Double-Input T1-FLS

DI-T1-FPD Double-Input Type-1 Fuzzy PD

FLC Fuzzy Logic Control

FLS Fuzzy Logic System

FNN Fuzzy Neural Network

FOU Footprint Of Uncertainty

FM Fuzzy Mapping

FS Fuzzy Set

GP Gaussian Process

GPS Global Positioning System

GPU Graphics Processing Unit

xxix

List of Abbreviations LIST OF ACRONYMS

IMU Inertial Measurement Unit

IT2-FLC Interval Type-2 FLC

IT2-FLS Interval Type-2 FLS

IT2-FNN Interval Type-2 FNN

KM Karnik-Mendel

LM Levenberg-Marquardt

MAE Mean Absolute Error

MAX Maximum Absolute Error

MF Membership Function

MIMO Multiple-Input Multiple-Output

MSE Mean Squared Error

MVCS Mean Variation of Control Signal

NSFLC Non-Singleton FLC

NSFLS Non-Singleton FLS

PD Proportional-Derivative

PI Proportional-Integral

PID Proportional-Integral-Derivative

PS Parameter Setting

RAM Random Access Memory

RMSE Root Mean Squared Error

ROS Robot Operating System

RTK-GPS Real-Time Kinematic GPS

SFLC Singleton FLC

SFLS Singleton FLS

SMC Sliding Mode Control

T1-FLC Type-1 FLC

T1-FLS Type-1 FLS

T1-FNN Type-1 FNN

T2-FLC Type-2 FLC

TSK Takagi-Sugeno-Kang

UAV Unmanned Aerial Vehicle

Part I

Introduction and Background

1

Chapter 1

Introduction

Since the beginning of time flying objects have exerted a great fascination on

mankind. The last decades have seen many exciting developments in the area of

unmanned aerial vehicles (UAVs) or drones. Moreover, UAVs are gaining increasing

interest due to a wide area of applications from military to civilian fields. An

attractive group of flying robots is composed of multicopter aircraft. A multicopter,

e.g., quadcopter or hexacopter, is a UAV which has vertical take-off and landing

characteristics. Due to its simple mechanical structure, it is capable of flying without

all those complex linkages appearing in typical helicopters. However, like a classical

helicopter, multicopters belong to a group of dynamical systems with non-linear

dynamics. Additionally, it is really hard to model all second-order effects. Thus,

a control system capable of dealing with non-linearity, unmodelled dynamics and

disturbances is needed [1]. Furthermore, integrating the sensors, actuators and

intelligence into a lightweight flying system is not trivial.

Designing nonlinear controllers for real-world systems to achieve high-accuracy

tracking is typically difficult, due to nonlinear relations combined with parameter

uncertainties, external disturbance, noisy measurements and other nonidealities in

the systems. However, designing and tuning conventional model-based controllers

to achieve satisfactory performance can be a time-consuming and difficult task, due

to non-linear dynamics, aerodynamic effects and various flight operating regimes.

In the presence of the aforementioned conditions, a model-free controller may be

preferred over model-based controllers.

3

4 Chapter 1. Introduction

Fuzzy logic is a form of many-valued reasoning paradigm in which the truth values

of variables may assume any real number between 0 and 1 both inclusive [2].

Consequently, fuzzy logic systems (FLSs) are employed to handle the concept of

partial truth. Thereupon, fuzzy logic controllers (FLCs), which inherit FLSs, are

alternative solutions to the model-based controllers without the requirement for

a precise mathematical model of the system which is often either unavailable or

time-consuming to obtain. Moreover, FLCs can improve the robustness of the

control system in the presence of uncertainties and noise. Type-1 FLCs (T1-FLCs)

are the most widely used types of FLCs, due to their limited complexity from design

and computation perspectives [3].

Though T1-FLCs are widely used, type-1 fuzzy sets (FSs), described by type-1 mem-

bership functions (MFs), can effectively handle only bounded levels of uncertainty,

while real-world applications frequently have to deal with high levels and multiple

sources of uncertainty [4]. Therefore, there has been a growing interest in a more

advanced form of FLC, namely type-2 FLC (T2-FLC) [5]. Better handling of the

uncertainty using T2-FLCs is provided by an additional degree of freedom benefiting

from the footprint of uncertainty (FOU) in their FSs [6]. However, also an additional

complexity arises from the inclusion of FOU as well as the third dimension [7].

Therefore, the research has tended to focus on interval T2-FLCs (IT2-FLCs) [8],

rather than on general T2-FLCs [9], because the mathematical formulation of

general T2-FLCs is much more complex than that of IT2-FLCs [10]. The adoption

of IT2-FLC allows reducing the computational complexity which is an immense

benefit in real-time applications [11].

However, modern computers can perform the basic algebraic operations, e.g.,

additions, subtractions, multiplication and divisions, much more efficiently than

the operations of FSs, e.g., unions, intersections and implications, needed in fuzzy

logic [12]. Therefore, the availability of an analytical form of fuzzy mapping

(FM), which represents FLS, can open new doors to the use of FLCs in real-time

applications. Still, one weakness of FLCs is that their parameters have to be tuned

to deal with uncertainties.

By definition, artificial neural networks (ANNs) are computing models which

progressively improve their performance by learning from training examples [13].

Similarly to biological brains, ANNs are built by many simple processing elements,

called neurons, which are interconnected by links, called synapses [14]. Hence, ANN

Chapter 1. Introduction 5

learns from the training samples by adjusting the synaptic weights of the connections

between neurons [15]. Moreover, ANNs reduce the need for feature engineering

which is one of the most time-consuming tasks in machine learning, for the training

data [16]. Therefore, ANNs are ideal for situations that require approximating a

function that depends on a huge number of inputs which nonlinearly connects to

the output [17]. Given the ability of ANNs to generalise knowledge from training

samples, ANN-based controllers are suitable to control nonlinear systems [18].

Though ANN can generalise knowledge from training samples, common single-

hidden-layer ANNs are able to approximate effectively only simple nonlinear func-

tions, while real-world systems are frequently highly nonlinear [19]. On the other

hand, deep neural networks (DNNs) which are distinguished from single-hidden-layer

ANNs by their depth that is the number of layers through which data must pass in

a multi-step process [20]. Thus, DNNs can effectively be used to solve advanced

tasks similar to or even better than human experts [21]. Moreover, DNNs can

approximate non-linear functions with an exponentially lower number of training

parameters and higher sample complexity when compared to ANNs [22]. Therefore,

DNNs propose a novel approach to enhance the control strategies for nonlinear

systems [23]. After training the DNN module on collected flight samples, it can be

used in real-time to provide the control signal [24].

The fuzzy logic has an exceptional ability to handle the uncertainties in the sys-

tem [25]. However, one weakness of FLCs is that their parameters have to be tuned

to deal with uncertainties [26]. On the other hand, ANNs are a family of supervised

learning models that mimics human brain [17]. Yet, the main weakness of ANNs is

that their inner workings are difficult to interpret [27]. The combination of FLC

and ANN, called fuzzy neural network (FNN), fuses the reasoning ability of FLC

to handle uncertain information with the training capability of ANN to learn from

the controlled process [28]. Consequently, FNN adopts the advantages of both FLC

and ANN [29].

It has been shown that DNNs are good at approximating knowledge but they do

not explain how they take their decisions [30]. On the other hand, FLSs are good at

explaining their decisions but they are not good at acquiring new information [26].

The limitations of these two techniques have been a driving force behind the creation

of hybrid systems where the combination of DNN and FLS, called deep fuzzy neural

network (DFNN), can overcome the drawbacks of each method [31].

6 1.1. Related Works

This thesis focuses on the aforementioned artificial intelligence-based control meth-

ods that enable UAVs to accurately track 3D trajectories. First, the investigation

considers the simplest static type-1 FLC, interval type-2 FLC, and the most efficient

FM-based controllers. Consequently, the controllers with learning capabilities are

studied based on ANNs and DNNs. Finally, the efficacy of combining fuzzy logic

and neural networks to adopt the advantages of both techniques is discussed.

1.1 Related Works

As being one of the fastest-growing sectors in the aerospace industry, UAVs can

provide an inexpensive solution to time-consuming, dull, dirty and dangerous

missions, such as emergency evacuation [32], traffic surveillance [33], aircraft detec-

tion [34], orchard monitoring [35] and environment mapping [36]. There are two

control paradigms for UAVs: model-based [37], which needs an exact model of the

system, and model-free [38], which does not need an exact model of the system.

The examples of the most widely used model-based controllers are proportional-

integral-derivative (PID) [39], dynamic feedback linearization [40], linear-quadratic

regulator [41], and model predictive control [42].

On the other hand, FLCs have been proposed as an alternative approach to

conventional model-based controllers when it is challenging to obtain the precise

mathematical model of the system [43–45]. This is due to several characteristics

of FLCs, inter-alia, improving the robustness and of the nonlinear control system

in the presence of uncertainties and external disturbances by using the expert

knowledge [25]. Therefore, FLCs have become one of the most popular model-free

approaches to control mobile robots [46, 47], especially UAVs [48], since their precise

mathematical model is challenging to obtain.

There are several types of control methods that use FLS as an essential component.

The majority of applications belong to the class of fuzzy PID controllers, where

FLS is placed within the feedback control loop and computes the PID control

signal through fuzzy inference [49]. In [50], more systematic analysis and design

for conventional double-input T1-FLC (DI-T1-FLC) are presented. In [51], a fuzzy

variable structure control is introduced for designing and tuning of DI-T1-FLC

based on variable structure control theory. The fuzzy PID controller derived in [52]

Chapter 1. Introduction 7

successfully demonstrated better performance than the conventional PID controller

for many cases, particularly for nonlinear plants. In [53], a function-based evaluation

approach is proposed for a systematic study of type-1 fuzzy PID controllers. In [54],

a general technique is developed for rigorously deriving analytical input-output

structure for fuzzy controllers that use Zadeh fuzzy AND-operator. In [55], an

analytical structure for fuzzy PID controllers has been derived using L-type and

G-type input FSs, trapezoidal output FSs, Mamdani minimum inference method,

algebraic product triangular norm, bounded sum triangular co-norm and center of

sums defuzzification method.

In the literature, singleton FLCs (SFLCs) are the most well-known and widely

used types of FLCs [56–58]. On the other hand, it is reported that non-singleton

FLCs (NSFLCs) give more promising results when compared to their singleton

counterparts for non-linear servo systems [59], active suspension systems [60], and

UAV control [61], where nonlinearities and uncertainties are more visible in the

system. Although both singleton and non-singleton T1-FLCs use the same fuzzy rule

base, inference engine and defuzzifier, there is a different fuzzifier in NS-T1-FLCs

which treats the inputs as FSs to deal with input uncertainties better [62–64].

Recently, many researchers have put significant attention toward more advanced

forms of fuzzy logic, such as T2-FLCs [65–67]. The transition from T1-FLCs to

T2-FLCs has been inspired by the observation that type-1 FSs can only deal with

a limited level of uncertainty whereas real-world control applications are often

confronted with high levels and multiple sources of uncertainty [68]. T2-FLCs can

be used to handle uncertainties better in the system, e.g., noisy measurements, due

to the additional degree of freedom provided by FOU in their FSs [69]. IT2-FLCs

have received more consideration [70–73], because the mathematics that is needed

for IT2-FLCs – primarily interval arithmetic – is much simpler than that of general

T2-FLCs [74]. The use of IT2-FLC helps to decrease the computation time which

is a big advantage in real-time on-board control applications [75].

Several studies have been presented to analyse the effect of the FOU on the type-2

FM [76]. In [77], the analytical structure of a special class of IT2 fuzzy proportional-

derivative (PD) and proportional-integral (PI) controllers that uses the Karnik-

Mendel (KM) iterative algorithm for the type-reduction has been presented. In [78],

the mathematical input-output structure of Mamdani IT2 fuzzy PI controllers

8 1.1. Related Works

is derived for centroid and averaged defuzzifiers. Instead of using common type-

reduction methods, IT2-FLC analysed in [78] approximates the type-reduced set by

averaging embedded IT2-FLCs. In [3], some recent research results are summarized

on understanding the fundamental differences between T1-FLCs and IT2-FLCs. It

has been shown in [3] that IT2-FLC can implement complex control surfaces that

cannot be achieved by T1-FLC using the same rule-base. In [79], a technique is

developed which is capable of deriving the analytical structure for a wide class of IT2-

FLCs. In [80], an explicit solution is proposed to determine optimal switching points

of KM method for double-input IT2-FLCs (DI-IT2-FLC). In [81], the analytical

structural analysis of the simplest DI-IT2-FLC is presented. In [82], an approach

to derive the analytical structure of a class of double-input Takagi-Sugeno FLCs

is presented. Recently, in [83], the authors analysed the input-output relationship

of various IT2-FLCs with trapezoidal FSs, and compared the difference in control

performance via analytical structure approach. Nevertheless, an exhaustive analysis

of FM for Mamdani DI-IT2-FLCs and real-time validation of the theoretical claims

are still missing in the literature [84]. The continuity of T1-FLCs and IT2-FLCs

have been introduced in [76]. Moreover, the study of other properties, such as

symmetry and monotonicity, of FM of double-input FLCs is missing in the literature.

In the literature, neural networks have successfully been integrated within control

systems to improve tracking performance [85]. In [86], the unknown part of the

dynamical model of a quadcopter is modelled by DNN. In [87], a robust direct inverse

control of a quadrotor is learnt by recurrent DNN in simulation. In [88] and [89],

DNNs are used to learn the dynamics of helicopter and multicopter, respectively.

In [90], DNN pre-cascaded module is used to improve the performance a quadrotor

in tracking arbitrary hand-drawn trajectory. However, in all these works, DNNs

are trained offline and, then, used in real-time without further learning.

In the literature, there are attempts to integrate strengths of learning capability of

neural networks and reasoning ability provided by fuzzy logic, called fuzzy neural

network (FNN), for various applications, such as emission prediction [91], movie

classification [92] and robot control [93]. However, in all these approaches, the

sequential learning paradigms is implemented [94]. For example, in [91, 93], first,

the original inputs are fuzzified and, then, the fuzzy numbers are fed into the neural

network. Contrarily, the method in [92], first, transforms the original data by using

DNN and, then, the deep representation is fuzzified at the output layer.

Chapter 1. Introduction 9

1.2 Contribution

The major and minor contributions achieved in this thesis are listed below.

Major contributions:

� Single input interval type-2 fuzzy PID controllers are derived and elaborated

in terms of their interpretability (video: tiny.cc/SI-IT2-FLC).

� A fuzzy mapping for double-input interval type-2 FLC has been explicitly

derived and analysed (video: tiny.cc/FM-FLC).

� A novel DFNN-based framework has been developed for learning online the

inverse dynamics of a system (video: tiny.cc/DFNN).

Minor contributions:

� The simulation setup has been implemented for quadcopter and coaxial

hexacopter UAV in ROS and Gazebo environment (video: tiny.cc/QLearning).

� Three different type-1 FLCs have been implemented for a quadcopter UAV

control problem (video: tiny.cc/T1-FLC).

� Type-1 FLC has been used with monocular visual-inertial SLAM in the

long-term navigation of quadrotor UAV (video: tiny.cc/SLAM-FLC).

� An ANN-based control method, which enables both fast flight and agile

manoeuvres, has been developed and tested (video: tiny.cc/fast ANN).

� An ANN-based controller has been applied for the fault-tolerant control for

actuator failure in coaxial hexacopter (video: tiny.cc/fault ANN).

� A DNN-based controller for transfer learning has been analytically derived

and tested on two different UAVs (video: tiny.cc/DNN).

� A novel LM theory-based algorithm for type-1 FNN has been presented to

control a quadcopter UAV (video: tiny.cc/LM-FNN).

http://tiny.cc/SI-IT2-FLC
http://tiny.cc/FM-FLC
http://tiny.cc/DFNN
http://tiny.cc/QLearning
http://tiny.cc/T1-FLC
http://tiny.cc/SLAM-FLC
http://tiny.cc/fast_ANN
http://tiny.cc/fault_ANN
http://tiny.cc/DNN
http://tiny.cc/LM-FNN

10 1.3. Outline

1.3 Outline

The outline of this work is as follows. After this introductory chapter, in Chapter 2,

the research problem related to the control of nonlinear systems in general – and

UAV in particular – is defined. In Chapter 3, potentials of different singleton and

non-singleton T1-FLCs are explored in simulation and real-time experiments by

using monocular keyframe-based visual-inertial localization for position estimation.

In Chapter 4, capabilities of different IT2-FLCs with Gaussian and elliptic MFs are

investigated for changing speed trajectories. In Chapter 5, an alternative method

to derive and analyse FM for T1-FLCs and IT2-FLCs is proposed and validated

in simulation and real-time experiments. In Chapter 6, potentials of ANNs-based

controllers are explored under fast and agile flights with a motor failure case for

a hexacopter UAV. In Chapter 7, DNN-based controller is proposed to solve a

transfer learning problem between similar robots and validated in simulation and

real-time experiments on two similar UAVs. In Chapter 8, potentials of FNN-based

controllers with sliding mode control (SMC) theory-based and Levenberg-Marquardt

(LM) theory-based training algorithms are investigated in the presence of periodic

wind gust in simulation and real-time experiments. In Chapter 9, capabilities of

a novel DFNN-based controller are explored under various operational conditions

in simulation and real-time experiments. Finally, some conclusions and possible

future works are drawn in Section 10. Besides, the derivations of the 3D rotation

matrix and of the rate transformation matrix are reported in Appendix A; while

the hat and vee mapping operators are defined in Appendix B.

A schematic overview of this thesis is depicted in Fig. 1.1 to show the relations

between different chapters and systems.

Chapter 1. Introduction 11

Fuzzy
Logic

System
(Part I)

Interval
Type-2

(Chapter 4)

Type-1
(Chapter 3)

Fuzzy
Mapping
(Chapter 5)

Deep
Fuzzy
Neural

Network
(Chapter 9)

Deep
Neural

Network
(Chapter 7)

Fuzzy
Neural

Network
(Chapter 8)

Artificial
Neural

Network
(Chapter 6)

Singleton
(Section 3.2)

Non-
Singleton
(Section 3.3)

Nonlinear
System

(Section 2.1)

Multicopter
(Section 2.2)

Quadcopter
(Section 2.2.1.1)

Coaxial
Hexacopter
(Section 2.2.1.2)

(S
ectio

n
6
.4

)

(S
ectio

n
4
.2

)

(S
ectio

n
5
.5

)

(S
ectio

n
9
.4

)

(S
ectio

n
7
.4

)

(Section 3.5)

Figure 1.1: Schematic overview of this thesis.

Chapter 2

Problem Definition

The term system, which comes from the Greek word ”systema”, defines a collection

of inter-related elements pursuing a particular objective [95]. Nearly all physical

systems are inherently nonlinear in nature since most of the real-world relationships

are nonlinear [96]. A nonlinear system is a system that does not satisfy the

superposition principle [97]. Nonlinear dynamical systems, describing changes in

system variables over time, may appear chaotic, counterintuitive and unpredictable,

contrasting with much simpler linear systems. The dynamical model of a UAV is

inherently nonlinear since the aerodynamic laws are highly nonlinear. Designing

nonlinear controllers for real-world systems to achieve high-accuracy tracking is

typically difficult, due to nonlinear relations combined with parameter uncertainties,

external disturbance, noisy measurements and other nonidealities in the systems.

In this chapter, the research problem related to the control of nonlinear systems in

general – and UAV in particular – is defined. First, Section 2.1 presents general

nonlinear discrete-time multi-input multi-output (MIMO) systems with internal

uncertainties, external disturbances and noisy measurements. Then, Section 2.2 de-

scribes dynamical models and control schemes for quadcopter and coaxial hexacopter

UAVs.

Supplementary Material:

Matlab model of a nonlinear system: github.com/andriyukr/nonlinear system.

Gazebo and Matlab models of UAV: github.com/andriyukr/uav model.

13

https://github.com/andriyukr/nonlinear_system
https://github.com/andriyukr/uav_model

14 2.1. Nonlinear Systems

2.1 Nonlinear Systems

First, consider a general nonlinear discrete-time MIMO dynamical system repre-

sented by its state-space model:x(k + 1) = f(x(k)) + g(x(k))u(k)

y(k) = h(x(k)),
(2.1)

where k ∈ N+ is the time step, x ∈ RNS is the state of the system, u ∈ RNI is the

input to the system, y ∈ RNO is the output from the system, and f : RNS → RNS ,

g : RNS → RNS × RNI and h : RNS → RNO are system functions.

Definition 2.1.1. Let r ∈ NNO
0 be the vector of relative degrees of the system,

which is the number of times one has to differentiate the output to have at least

one of the inputs explicitly appearing [98], i.e.:

arg max
ri

∂

∂u

[
hi
(
f ri−1 (f(x) + g(x)u)

)]
6= 0, i ∈ {1, . . . , NO}. (2.2)

Assumption 1. The system in (2.1) has well-defined relative degrees in (2.2) [99].

Assumption 2. The system in (2.1) is minimum-phase [100].

Assumption 3. The system in (2.1) is input-to-output stable [101], i.e.:

‖y(k)‖ ≤ γ (‖u(k)‖) ∀k, (2.3)

where γ is a gain function. In other words, γ is a scalar continuous function which

is nondecreasing and γ(0) = 0.

The input and the output of the system are related by

yi(k + ri) = hi
(
f ri−1 (f(x(k)) + g(x(k))u(k))

)
, i ∈ {1, . . . , NO}. (2.4)

If y is affine in u, then (2.4) becomes

yi(k + ri) = Fi(x(k)) + Gi(x(k))u(k), i ∈ {1, . . . , NO}, (2.5)

where

Fi(x(k)) = hi (f
ri(x(k))) : RNS → RNO (2.6)

Chapter 2. Problem Definition 15

and

Gi(x(k)) =
∂

∂u(k)

[
hi
(
f ri−1 (f(x(k)) + g(x(k))u(k))

)]
: RNS → RNO × RNI (2.7)

are decoupling functions. Finally, to track the desired output of the system y∗ ∈ RNO ,

the control law at time k can be written as in [102]:

ui(k) = [G(x(k))]−1 (y∗(k + ri)−F(x(k))) , i ∈ {1, . . . , NO}. (2.8)

Assumption 4. The desired output of the system in (2.1) is available and bounded,

i.e.:

∀k ∃y∗(k) ∈ RNO | ‖y∗(k)‖∞ ≤ cy∗ , (2.9)

where cy∗ is some positive constant [103].

If a precise model of the system exists, the inversion of the system can be computed.

However, the system’s parameters might be unknown and difficult to estimate (e.g.,

moments of inertia). Besides, these parameters might change during the operation of

the system (e.g., mass). In addition, it is difficult to predict the external disturbance

term (e.g., wind gust). Furthermore, measurements from the system might come

from a noisy sensor (e.g., monocular camera). Therefore, the control law in (2.8)

cannot always be calculated precisely.

2.1.1 Internal Uncertainties

Consider a general nonlinear discrete-time MIMO dynamical system with internal

uncertainties: x(k + 1) = f̃(x(k)) + g̃(x(k))u(k)

y(k) = h̃(x(k)),
(2.10)

where f̃ : RNS → RNS , g̃ : RNS → RNS × RNI and h̃ : RNS → RNO are new system

functions. To track the desired output of the system y∗, the control law is

ui(k) =
[
G̃(x(k))

]−1 (
y∗(k + ri)− F̃(x(k))

)
, (2.11)

where

F̃i(xk) = h̃i

(
f̃ ri(x(k))

)
: RNS → RNO (2.12)

16 2.1. Nonlinear Systems

and

G̃i(x(k)) =
∂

∂u(k)

[
h̃i

(
f̃ ri−1

(
f̃(x(k)) + g̃(x(k))u(k)

))]
: RNS → RNO × RNI

(2.13)

are new decoupling functions. Therefore, for an exact tracking of y∗, the exact

values of new system functions f̃ , g̃ and h̃ are required.

2.1.2 External Disturbance

Consider a general nonlinear discrete-time MIMO dynamical system with external

disturbances: x(k + 1) = f(x(k)) + g(x(k))u(k) + d(k)

y(k) = h(x(k)),
(2.14)

where d : R→ RNI is the disturbance to the system. To track the desired output

of the system y∗, the control law at time k is

ui(k) = [G(x(k))]−1 (y∗(k + ri)−F(x(k)−D(k))) , (2.15)

where D(k) = hi (f
ri−1(d(k))) ∈ RNO is the disturbance decoupling matrix. There-

fore, for an exact tracking of y∗, the exact value of disturbance d(k) is required.

2.1.3 Noisy Measurement

Consider a general nonlinear discrete-time MIMO dynamical system with noisy

measurements: x(k + 1) = f(x(k)) + g(x(k))u(k)

y(k) = h(x(k)) +N (k),
(2.16)

where N : R2 → RNO is an additive noise, e.g., additive white Gaussian noise, at

time step k. To track the desired output of the system y∗, the control law is

ui(k) = [G(x(k))]−1 (y∗(k + ri)−N (k + ri)−F(x(k))) . (2.17)

Therefore, for an exact tracking of y∗, the exact model of noise N is required.

Chapter 2. Problem Definition 17

2.2 Multicopter Unmanned Aerial Vehicles

Nowadays, the use of UAVs by amateurs with minimal piloting skills, skilled

hobbyists, and licensed pilots for purposes of aerial photography, drone racing, and

hobby, continues to grow [104]. There are two major types of users which lead to

the innovation and development of cutting-edge technology in this sector – military

and consumer industry. The former is mainly interested in long-range endurance

missions, and – thus, usually prefers fixed-wing UAVs, while the latter leans more

toward vertical take-off and landing capable multicopter UAVs. This modern-day

marvel is improving progressively and it is becoming accessible to most of the people.

Furthermore, besides leisure activities, these UAVs have also started to assume an

important role in a wide range of applications like – transportation [105], surveying

and mapping [106], and search and rescue [107].

2.2.1 Multicopter Unmanned Aerial Vehicle’s Dynamics

Let the world fixed inertial reference frame be FW = {~xW , ~yW ,~zW} and the body

frame be FB = {~xB, ~yB,~zB}. The origin of the body frame is located at the center

of mass (COM) of the UAV. Two UAV configurations with the corresponding

reference frames for X4 quadrotor and Y6 coaxial hexacopter UAV are illustrated

in Fig. 2.1.

The NM motors’ rotations generate NM forces fi, i ∈ {1, . . . , NM}, directed along

the axis of rotation ~zB and with module proportional to the speed of rotation, and

𝑇
𝜔3

𝜔4

𝜏𝜃𝐱𝐵

𝜏𝜓

𝜏𝜙

Ԧ𝐲𝐵

Ԧ𝐳𝐵

𝐩 𝐨

𝐱𝑊 Ԧ𝐲𝑊

Ԧ𝐳𝑊
𝜔1

𝜔2

𝑙

𝑓4
𝑓2

𝑓1

𝑓3

(a) X4 quadrotor UAV.

𝑇

𝜔5

𝜔6

𝜔3

𝜔4 𝜏𝜃

𝐱𝐵

𝜏𝜓

𝜏𝜙

Ԧ𝐲𝐵
Ԧ𝐳𝐵

𝐩 𝐨

𝐱𝑊 Ԧ𝐲𝑊

Ԧ𝐳𝑊
𝜔1

𝜔2

𝑙𝑓4

𝑓6

𝑓5

𝑓2

𝑓1

𝑓3

(b) Y6 coaxial hexacopter UAV.

Figure 2.1: UAVs configurations with their references frames.

18 2.2. Multicopter Unmanned Aerial Vehicles

NM torques τi, i ∈ {1, . . . , NM}, around the axis of rotation ~zB and with module

proportional to the speed of rotation [108]:fi = bω2
i

τi = dω2
i

, i ∈ {1, . . . , NM}, (2.18)

where b is the propeller thrust coefficient, d is the propeller drag coefficient and ωi

is the rotational speed of the ith propeller.

The UAV electric motors are velocity controlled, so the vector of control inputs u

may bu considered directly as

u =
[
T τφ τθ τψ

]T
, (2.19)

where T is the total thrust and acts along ~zB axis, whereas τφ, τθ and τψ are the

moments acting around ~xB, ~yB and ~zB axes, respectively.

The absolute position of the UAV p =
[
x y z

]T
is described by three Cartesian

coordinates of its COM in FW . While the attitude of the UAV θ =
[
φ θ ψ

]T
is

described by three Euler’s angles. These three angles are respectively called roll φ,

pitch θ and yaw ψ.

The time derivative of the position (x, y, z) gives the linear velocity

v =
[
ẋ ẏ ż

]T
=
[
vx vy vz

]T
, (2.20)

of the UAV’s COM expressed in FW . Let vB ∈ R3 be the absolute velocity of the

UAV expressed in FB. So, v and vB are related by

v = RvB, (2.21)

where R ∈ SO(3) is the rotation matrix from FB to FW and is computed in

Appendix A:

R =


cosψ cos θ cosψ sinφ sin θ − cosφ sinψ sinφ sinψ + cosφ cosψ sin θ

cos θ sinψ cosφ cosψ + sinφ sinψ sin θ cosφ sinψ sin θ − cosψ sinφ

− sin θ cos θ sinφ cosφ cos θ

 .
(2.22)

Chapter 2. Problem Definition 19

Similarly, the time derivative of the attitude (φ, θ, ψ) gives the angular velocity

expressed in FW :

ω =
[
φ̇ θ̇ ψ̇

]T
, (2.23)

and the angular velocity expressed in FB is

ωB =
[
ωφ ωθ ωψ

]T
. (2.24)

The relation between ω and ωB is given by

ω = TωB, (2.25)

in which T is the transformation matrix and is computed in Appendix A.1:

T =


1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ

 , (2.26)

which depends only on the UAV’s attitude.

Correspondingly, let a ∈ R3 be the absolute acceleration of the UAV expressed in

FW and aB ∈ R3 be the absolute acceleration of the UAV expressed in FB. So, the

relation between a and aB is computed by the analytical derivative of (2.21):

a = ṘvB + RaB. (2.27)

Using the Newton-Euler equations about UAV’s COM, the dynamical model of the

UAV body is the following [109]:mv̇ = fE

Iω̇B = −ωB × IωB + τE,
(2.28)

where m is the UAV mass, I is the inertia matrix, and fE is the vector of external

forces and τE is the vector of external torques. The products of inertia can be

considered to be 0 due to the symmetries of the system, and I becomes a diagonal

20 2.2. Multicopter Unmanned Aerial Vehicles

matrix given by

I =


Ix 0 0

0 Iy 0

0 0 Iz

 . (2.29)

Some calculations yield the following form for fE and τE:

fE =


(cosφ sin θ cosψ + sinφ sinψ)T

(cosφ sin θ sinψ − sinφ cosψ)T

(cosφ cos θ)T −mg



τE =


τφ

τθ

τψ

 ,
(2.30)

in which g is the gravitational acceleration constant (g = 9.81m/s2). Finally, using

dynamic and kinematic differential equations (2.21), (2.25), (2.28) and (2.30), the

following system of non-linear differential equations is obtained:

ẋ = vx

ẏ = vy

ż = vz

φ̇ = ωφ + (sinφ tan θ)ωθ + (cosφ tan θ)ωψ

θ̇ = (cosφ)ωθ − (sinφ)ωψ

ψ̇ = sinφ
cos θ

ωθ + cosφ
cos θ

ωψ

v̇x = 1
m

(cosφ cosψ sin θ + sinφ sinψ)T

v̇y = 1
m

(cosφ sinψ sin θ − cosψ sinφ)T

v̇z = 1
m

(cosφ cos θ)T − g

ω̇φ = Iy−Iz
Ix

ωθωψ + 1
Ix
τφ

ω̇θ = Iz−Ix
Iy

ωφωψ + 1
Iy
τθ

ω̇ψ = Ix−Iy
Iz

ωφωθ + 1
Iz
τψ.

(2.31)

which can be described in state space form in (2.1) with

x =
[
x y z φ θ ψ vx vy vz ωφ ωθ ωψ

]T
, (2.32)

Chapter 2. Problem Definition 21

f(x) =



vx

vy

vz

ωφ + sinφ tan θωθ + cosφ tan θωψ

cosφωθ − sinφωψ
sinφ
cos θ

ωθ + cosφ
cos θ

ωψ

0

0

−g
Iy−Iz
Ix

ωθωψ
Iz−Ix
Iy

ωφωψ
Ix−Iy
Iz

ωφωθ



, (2.33)

g(x) =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
1
m

(cosφ cosψ sin θ + sinφ sinψ) 0 0 0
1
m

(cosφ sinψ sin θ − cosψ sinφ) 0 0 0
1
m

cosφ cos θ 0 0 0

0 1
Ix

0 0

0 0 1
Iy

0

0 0 0 1
Iz



, (2.34)

u =
[
T τφ τθ τψ

]T
(2.35)

and

y = x. (2.36)

Remark 2.1. If the attitude controller as in [110] is included in the dynamical

model, then the virtual control inputs are.

u =
[
vz φ θ ωψ

]T
. (2.37)

22 2.2. Multicopter Unmanned Aerial Vehicles

2.2.1.1 X4 Quadcopter

A quadcopter, or quadrotor, shown in Fig. 2.1a, is an aerial vehicle actuated by

modulating the speed commands of each of the four motors (NM = 4). It consists

of four identical rotors and propellers located at the extremities of an X-shaped

frame. In a quadcopter, the two axes ~xB and ~yB lie in the plane defined by the

centres of the four rotors and point between rotor 1 and rotor 2 and between rotor 1

and rotor 4, respectively, as illustrated in Fig. 2.1a. The axis ~zB points upward as

the direction of the total thrust, defining the body-up configuration.

In a quadcopter, all the movements are the consequence of the propellers’ speed (as

shown in Fig. 2.2): two propellers rotate in a clockwise direction (the second and

the fourth propellers), while the other two rotate in a counter-clockwise direction

(the first and the third propellers). Changing simultaneously the throttle of all

motors, while the vehicle is horizontal, produces vertical motion (Fig. 2.2a). A

difference of speed between the blades on the same axis carries a rotation of the

aircraft about the other axis. Roll moment is produced by adjusting the thrust of

the left motor with respect to the right one (Fig. 2.2b). Pitch moment is produced

similarly by increasing the thrust of the front motor while decreasing that of the

rear motor or vice versa (Fig. 2.2c). Yaw moment is slightly more subtle: if the

front and rear motors (which spin clockwise) spin faster than the left and right

motors (which spin counter-clockwise), yawing results due to the difference in rotor

drag moments on the respective motors (Fig. 2.2d). Therefore, the quadcopter is a

highly non-linear dynamical system with four control inputs (angular speed of four

rotors) and six degrees of freedom (position and orientation in space), resulting in

a MIMO under-actuated system.

The relation between u in (2.19) and ωi, i ∈ {1, . . . , 4}, is algebraic [111]:

T = f1 + f2 + f3 + f4

τφ = l sin π
4

(f1 − f2 − f3 + f4)

τθ = l cos π
4

(−f1 − f2 + f3 + f4)

τψ = −τ1 + τ2 − τ3 + τ4,

(2.38)

Chapter 2. Problem Definition 23

𝑇
𝜔3

𝜔4

𝐱𝐵 Ԧ𝐲𝐵

Ԧ𝐳𝐵

𝜔1

𝜔2

𝑓4
𝑓2

𝑓1

𝑓3

(a) Motion along vertical axis.

𝜔3

𝜔4

𝐱𝐵

𝜏𝜙

Ԧ𝐲𝐵

Ԧ𝐳𝐵

𝜔1

𝜔2

𝑓4
𝑓2

𝑓1

𝑓3

(b) Roll motion.

𝜔3

𝜔4

𝜏𝜃𝐱𝐵 Ԧ𝐲𝐵

Ԧ𝐳𝐵

𝜔1

𝜔2

𝑓4
𝑓2

𝑓1

𝑓3

(c) Pitch motion.

𝜔3

𝜔4

𝐱𝐵

𝜏𝜓

Ԧ𝐲𝐵

Ԧ𝐳𝐵

𝜔1

𝜔2

𝑓4
𝑓2

𝑓1

𝑓3

(d) Yaw motion.

Figure 2.2: The quadcopter concept. The length of the arrows is proportional to
the corresponding forces and torques.

where l is the arm length. Applying (2.18) to (2.38):

T = b (ω2
1 + ω2

2 + ω2
3 + ω2

4)

τφ =
√

2
2
bl (ω2

1 − ω2
2 − ω2

3 + ω2
4)

τθ =
√

2
2
bl (−ω2

1 − ω2
2 + ω2

3 + ω2
4)

τψ = d (−ω2
1 + ω2

2 − ω2
3 + ω2

4) ,

(2.39)

and writing it in matrix form:
T

τφ

τθ

τψ

 =


b b b b
√

2
2
bl −

√
2

2
bl −

√
2

2
bl

√
2

2
bl

−
√

2
2
bl −

√
2

2
bl

√
2

2
bl

√
2

2
bl

−d d −d d



ω2

1

ω2
2

ω2
3

ω2
4

 . (2.40)

24 2.2. Multicopter Unmanned Aerial Vehicles

The relation in 2.40 is always invertible, when l 6= 0, b 6= 0 and d 6= 0:
ω2

1

ω2
2

ω2
3

ω2
4

 =
1

4bdl


dl

√
2d −

√
2d −bl

dl −
√

2d −
√

2d bl

dl −
√

2d
√

2d −bl
dl

√
2d

√
2d bl



T

τφ

τθ

τψ

 . (2.41)

Therefore, the control inputs can be brought back to the speed of the motors.

Remark 2.2. For the dynamical simulations, the model of the quadcopter is

implemented in the robot operating system (ROS) and Gazebo simulator. The

UAV’s position is measured by a simulated global positioning system (GPS); while

the UAV’s attitude and angular velocities are provided by a simulated inertial

measurement unit (IMU).

2.2.1.2 Y6 Coaxial Hexacopter

A Y6 coaxial hexacopter, shown in Fig. 2.1b, is an aerial vehicle actuated by

modulating the speed commands of each of the six motors (NM = 6). It consists of

six identical rotors and propellers located at the extremities of a Y-shaped frame

with two motors per arm (top and bottom). In a coaxial hexacopter, the two axes

~xB and ~yB lie in the plane defined by the centres of the six rotors, as illustrated in

Fig. 2.1b. The axis ~zB points upward as the direction of the total thrust, defining

the body-up configuration.

In a coaxial hexacopter, as well as in a quadcopter, all the movements are the

consequence of the propellers’ speed (as shown in Fig. 2.3). The top three propellers

rotate in a clockwise direction, while the bottom three rotate in a counter-clockwise

direction. Changing simultaneously the throttle of all motors, while the vehicle is

horizontal, produces vertical motion (Fig. 2.3a). A difference of speed between the

blades on the same axis carries a rotation of the aircraft about the other axis. Roll

moment is produced by adjusting the thrust of the left motor with respect to the

right one (Fig. 2.3b). Similarly, pitch moment is produced by increasing the thrust

of the front motor while decreasing that of the rear motor or vice versa (Fig. 2.3c).

Yaw moment is slightly more subtle: if the top motors (which spin clockwise) spin

faster than the bottom motors (which spin counter-clockwise), yawing results due

to the difference in rotor drag moments on the respective motors (Fig. 2.3d).

Chapter 2. Problem Definition 25

𝑇

𝜔5

𝜔6

𝜔3

𝜔4

𝐱𝐵

Ԧ𝐲𝐵
Ԧ𝐳𝐵

Ԧ𝐳𝑊
𝜔1

𝜔2

𝑓4

𝑓6

𝑓5

𝑓2

𝑓1

𝑓3

(a) Motion along vertical axis.

𝜔5

𝜔6

𝜔3

𝜔4

𝐱𝐵𝜏𝜙

Ԧ𝐲𝐵
Ԧ𝐳𝐵

Ԧ𝐳𝑊
𝜔1

𝜔2

𝑓4

𝑓6

𝑓5

𝑓2

𝑓1

𝑓3

(b) Roll motion.

𝜔5

𝜔6

𝜔3

𝜔4 𝜏𝜃

𝐱𝐵

Ԧ𝐲𝐵
Ԧ𝐳𝐵

Ԧ𝐳𝑊
𝜔1

𝜔2

𝑓4

𝑓6

𝑓5

𝑓2

𝑓1

𝑓3

(c) Pitch motion.

𝜔5

𝜔6

𝜔3

𝜔4

𝐱𝐵

𝜏𝜓 Ԧ𝐲𝐵
Ԧ𝐳𝐵

Ԧ𝐳𝑊
𝜔1

𝜔2

𝑓4

𝑓6

𝑓5

𝑓2

𝑓1

𝑓3

(d) Yaw motion.

Figure 2.3: The coaxial hexacopter concept. The length of the arrows is propor-
tional to the corresponding forces and torques.

The relation between u in (2.19) and ωi, i ∈ {1, . . . , 6}, is algebraic:

T = f1 + f2 + f3 + f4 + f5 + f6

τφ = l
(
sin π

3
(f3 + f4)− sin π

3
(f5 + f6)

)
τθ = l

(
−(f1 + f2) + cos π

3
(f3 + f4 + f5 + f6)

)
τψ = −τ1 + τ2 − τ3 + τ4 − τ5 + τ6.

(2.42)

26 2.2. Multicopter Unmanned Aerial Vehicles

Applying (2.18) to (2.42):

T = b (ω2
1 + ω2

2 + ω2
3 + ω2

4 + ω2
5 + ω2

6)

τφ =
√

3
2
bl (ω2

3 + ω2
4 − ω2

5 − ω2
6)

τθ = 1
2
bl (−2ω2

1 − 2ω2
2 + ω2

3 + ω2
4 + ω2

5 + ω2
6)

τψ = d (−ω2
1 + ω2

2 − ω2
3 + ω2

4 − ω2
5 + ω2

6) ,

(2.43)

and writing it in matrix form:


T

τφ

τθ

τψ

 =


b b b b b b

0 0
√

3
2
bl

√
3

2
bl −

√
3

2
bl −

√
3

2
bl

−bl −bl 1
2
bl 1

2
bl 1

2
bl 1

2
bl

−d d −d d −d d





ω2
1

ω2
2

ω2
3

ω2
4

ω2
5

ω2
6


. (2.44)

The relation in (2.44) is always invertible, when l 6= 0, b 6= 0 and d 6= 0. The inverse

of (2.44) is 

ω2
1

ω2
2

ω2
3

ω2
4

ω2
5

ω2
6


=

1

6bdl



dl 0 −2d −bl
dl 0 −2d bl

dl
√

3d d −bl
dl

√
3d d bl

dl −
√

3d d −bl
dl −

√
3d d bl




T

τφ

τθ

τψ

 . (2.45)

Therefore, the control inputs can be brought back to the speed of the individual

motors.

Remark 2.3. For the dynamical simulations, the model of the coaxial hexacopter

is implemented in ROS and Gazebo simulator. The UAV’s position is measured by

a simulated GPS; while the UAV’s attitude and angular velocities are provided by

a simulated IMU.

Chapter 2. Problem Definition 27

2.2.2 Control Scheme

The overall structure of the closed-loop control scheme for the UAV’s dynamical

system (2.31) is illustrated in Fig. 2.4. It consists of five main blocks: high-level

position controller, mid-level velocity and attitude controllers, low-level motor speed

controller, and UAV itself.

2.2.2.1 Position Control

The position controller in Fig. 2.4 consists of three identical and independent sub-

controllers for x, y and z axes, as shown in Fig. 2.5. If p∗ =
[
x∗ y∗ z∗

]T
is the

desired position of the UAV, then the position error is

ep =
[
ex ey ez

]T
= p∗ − p. (2.46)

The position controller computes the desired linear velocity v∗ =
[
v∗x v∗y v∗z

]T
,

in order to reach the desired position p∗ from the current position p. Each sub-

controller takes the corresponding position error, as the input, and returns the

corresponding control signal, as the output. For the x-axis controller, the input is

ex and the output is v∗x. For the y-axis controller, the input is ey and the output is

v∗y. For the z-axis controller, the input is ez and the output is v∗z .

Position
controller

Velocity
controller Attitude

controller

Motors
controller

UAV
dynamics

p∗ v∗
T

R∗ τ e

Ω

ωB R v

p

Figure 2.4: Block diagram of the control system for a multicopter UAV.

28 2.2. Multicopter Unmanned Aerial Vehicles

y-axis
controller

x-axis
controller

z-axis
controller

p∗ +

p

−

ep

ex

ey

ez

v∗x

v∗y

v∗z

v∗

Figure 2.5: Block diagram of the position controller for a multicopter UAV.

2.2.2.2 Velocity Control

For the velocity tracking, the nonlinear geometric controller on the special Euclidean

group SE(3) is used [32]. If v∗ is the vector of desired linear velocities provided by

the velocity controller, the velocity error is given by

ev = v − v∗. (2.47)

To fly always forward, UAV has to point towards the direction of the movement.

Therefore, the desired direction of the first body axis is

~x∗B =
1∥∥∥v∗x v∗y 0

∥∥∥
[
v∗x v∗y 0

]T
. (2.48)

Now, the desired direction of the second and third body axes can be computed:~z∗B = −kvev−mge3
‖−kvev−mge3‖

~y∗B =
~z∗B×~x

∗
B

‖~z∗B×~x
∗
B‖
,

(2.49)

where kv is some positive constant and e3 =
[
0 0 1

]T
. It can be also assumed

that ~x∗B ∦ ~z∗B. The rotation matrix for the desired attitude (~x∗B, ~y
∗
B,~z

∗
B) is given by

R∗ =
[
~y∗B × ~z∗B ~y∗B ~z∗B

]
∈ SO(3). (2.50)

Finally, the first control input in (2.19) – thrust – is chosen as follows:

T = (kvev +mge3)T Re3, (2.51)

where kv is some positive constant gain.

Chapter 2. Problem Definition 29

2.2.2.3 Attitude Control

For the attitude tracking, the nonlinear geometric controller on the special Euclidean

group SE(3) is used [112]. If R∗ is the desired rotation matrix provided by the

velocity controller, the attitude error is given by

eR =
1

2

[
R∗TR−RTR∗

]∨
, (2.52)

where [·]∨ is the vee map: SO(3)→ R3, defined in (B.3). Then, the error for the

angular velocity is given by

eω = ωB −RTR∗ω∗B, (2.53)

where [ω∗B]∧ = R∗T Ṙ∗, [·]∧ is the hat map: R3 → SO(3), defined in (B.1), and

the derivative of the rotation matrix Ṙ is defined in (??). Finally, the remaining

control inputs in (2.19) are chosen as follows:

τ = −kReR − kωeω + ωB × IωB, (2.54)

where τ =
[
τφ τθ τψ

]T
is desired torque, kR and kω are some positive constants.

2.2.2.4 Motors Speed Control

The motor speed controller is a static controller and it maps control inputs in (2.19)

computed with (2.51) and (2.54) to the desired motor speed Ω. In case of the

quadcopter, Ω =
[
ω1 ω2 ω3 ω4

]T
and is computed with (2.41). In case of the

coaxial hexacopter, Ω =
[
ω1 ω2 ω3 ω4 ω5 ω6

]T
and is computed with (2.45).

2.2.2.5 Real-World Control Scheme

The architecture of the real-time implementation of the control scheme is shown in

Fig. 2.6. The trajectory generator provides high-level navigation commands which

are interpreted by the position controller as the desired position. Once the desired

thrust and attitude are computed, they are sent to the onboard velocity-attitude

controller which converts them to the control inputs. Different sensors are used to

estimate the actual position of the UAV to feed it back to the position controller.

30 2.2. Multicopter Unmanned Aerial Vehicles

N
e
tw

o
r
k

G
ro

u
n

d
 S

ta
tio

n

P
o

sitio
n

C
o

n
tro

llers

𝑥
c
o
n

tr
o
l

T
r
a

je
c
to

r
y

G
e
n

e
r
a

to
r

𝑧
c
o
n

tr
o
l

𝑦
c
o
n

tr
o
l

𝑥
∗

𝑦
∗

𝑧
∗

𝑒
𝑥

𝑒
𝑦𝑒
𝑧

𝜃
∗

𝜙
∗

+
−

+
−

+
−

P
o
sitio

n
 E

stim
a
tio

n

U
n

m
a

n
n

e
d

 A
e
r
ia

l V
e
h

icle

𝑇𝜏
𝜙

𝜏
𝜃

𝜏
𝜓

ഥ𝜙ഥ𝜃ഥ𝜓

V
e
lo

c
ity

-

A
ttitu

d
e

C
o
n

tr
o
lle

r
Q

u
a

d
r
o
to

r

D
y
n

a
m

ic
s

O
n

b
o
a

r
d

S
e
n

so
r
s

O
p

tic
a

l

F
lo

w

ො𝑣𝑧ഥ𝜙ഥ𝜃ഥ𝜓 ො𝑣𝑦 ො𝑣𝑥

𝑣
𝑧
∗

o
r 𝑇

∗

ഥ𝜔
𝜙

ഥ𝜔
𝜃

ഥ𝜔
𝜓

ഥ𝜔
𝜙

ഥ𝜔
𝜓

ഥ𝜔
𝜃

V
isu

a
l-

In
e
r
tia

l

O
d

o
m

e
tr

y

M
o
tio

n

C
a
p

tu
r
e

S
y

ste
m

G
lo

b
a

l

P
o
sitio

n
in

g

S
y

ste
m

R
G

B

im
age

s

IR

im
age

s

ො𝑥ො𝑦Ƹ𝑧

G
rayscale
im

age
s

Satellite
m

essage
s

F
igu

re
2
.6

:
A

rch
itectu

re
of

th
e

real-w
orld

im
p

lem
en

tation
of

th
e

con
trol

sch
em

e
for

U
A

V
.

Part II

Fuzzy Logic-Based Control

31

Chapter 3

Type-1 Fuzzy Logic-Based Control

Fuzzy logic is a form of many-valued reasoning paradigm in which the truth

values of variables may assume any real number between 0 and 1 [2]. Fuzzy logic

is employed to deal with the concept of partial truth by using expert knowledge

throughout its design. Thereupon, FLCs are alternative solutions to the model-

based controllers without the requirement for the precise mathematical model of the

system which is often either unavailable or highly time-consuming to obtain. Hence,

FLCs have been extensively used for the control of nonlinear systems, like in (2.1),

due to their capability of delivering excellent control in the presence of uncertainties

and noise. Generally, T1-FLCs are the most widely used types of FLCs, due to

their limited complexity from design and computation perspectives [3].

In this chapter, potentials of different T1-FLCs are explored under various opera-

tional conditions. First, Sections 3.1 revises the definition of T1-FLCs. Sections 3.2

and 3.3 present traditional singleton and enhanced non-singleton T1-FLCs, respec-

tively. Then, Sections 3.4 and 3.5 show simulation and experimental results on

quadrotor UAV, respectively. Finally, some conclusions are drawn in Section 3.6.

Supplementary Material:

ROS package for the proposed T1-FLCs: github.com/andriyukr/controllers.

Video for the simulation results: tiny.cc/T1-FLC.

Video for the experimental results: tiny.cc/SLAM-FLC.

33

https://github.com/andriyukr/controllers
http://tiny.cc/T1-FLC
http://tiny.cc/SLAM-FLC

34 3.1. Mathematical Preliminaries

3.1 Mathematical Preliminaries

Commonly, T1-FLS consists of four elements: fuzzifier, rule-base, inference engine

and defuzzifier. All these blocks are interconnected, and Fig. 3.1 shows the general

structure of T1-FLS. Generally, T1-FLS can be seen as a mapping from crisp input

σ =
[
σ1 · · · σNI

]T
, where NI is the number of crisp inputs, to crisp output

ϕT1 =
[
ϕT1

1 · · · ϕT1
NO

]T
, where NO is the number of crisp outputs. Initially, the

fuzzifier transforms crisp inputs σ into fuzzy input sets ΣT1.

Definition 3.1.1. If σ is a crisp input to T1-FLS, a type-1 fuzzy set (FS) A is

described by a type-1 membership function (MF) µA(σ) ∈ [0, 1], i.e.:

A = {(σ, µA(σ)) | µA(σ) ∈ [0, 1] ∀σ ∈ R} . (3.1)

In other words, FSs are associated with the fuzzy inputs ΣT1 =
[
ΣT1

1 · · · ΣT1
NI

]T
and fuzzy outputs ΦT1 =

[
ΦT1

1 · · · ΦT1
NO

]T
; while MFs µ are used to describe

these FSs. An example of three Gaussian type-1 FSs are illustrated in Fig. 3.2.

Remark 3.1. If MFs in (3.1) assume only 0 or 1, i.e., µ(σ) ∈ {0, 1}; then, type-1

FSs degenerate into singleton FSs.

Three singleton FSs are illustrated in Fig. 3.3. Based on how the inputs are handled

in the fuzzifier, two types of fuzzification exist: singleton and non-singleton.

Definition 3.1.2. If the input to FLS is type-0, i.e., crisp input, then FLS is called

singleton FLS (SFLS).

Definition 3.1.3. If the input to FLS is type-1 FS, then FLS is called non-singleton

FLS (NSFLS).

Fuzzifier Inference Defuzzifier

Rule-base

σ ΣT1 ΦT1 ϕT1

R

Figure 3.1: Structure of the type-1 fuzzy logic system.

Chapter 3. Type-1 Fuzzy Logic-Based Control 35

0 σj0

µAj

1

−1 1

A1
j = N A2

j = Z A3
j = P

Figure 3.2: ”Negative” (N), ”zero” (Z) and ”positive” (P) FSs represented by
three Gaussian type-1 MFs.

0 ϕj0

µCj

1

−1 −0.5 0.5 1

C1
j = BN C2

j = SN C3
j = Z C4

j = SP C5
j = BP

Figure 3.3: ”Big negative” (BN), ”small negative” (SN), ”zero” (Z), ”small positive”
(SP) and ”big positive” (BP) FSs represented by five singleton MFs.

The rule-base R is the core of any FLS. Every single rule Ri ∈ R can be expressed

as an IF− THEN statement. The IF-part is the antecedent, while the THEN-part

is the consequent.

Definition 3.1.4. If NR is the number of rules in a rule-base R, then the ith rule

Ri ∈ R, i ∈ {1, . . . , NR}, is indicated as IF− THEN statement, i.e.:

Ri :
IF σ1 is A1,i and . . . and σNI

is ANI ,i,

THEN ϕ1 is C1,i and . . . and ϕNO
is CNO,i

, i ∈ {1, . . . , NR}, (3.2)

where Aj,i, j ∈ {1, . . . , NI}, represents antecedent FS; while Ch,i, h ∈ {1, . . . , NO},
represents consequent FS.

36 3.1. Mathematical Preliminaries

A typical 9 and 27 rules rule-bases are shown in Table 3.1 [113] and Table 3.2 [114],

respectively.

Remark 3.2. It has to be emphasised that Akj , j ∈ {1, . . . , NI}, k ∈ {1, . . . , NF},
represents the kth antecedent FS of the jth input; while, Aj,i, j ∈ {1, . . . , NI}, i ∈
{1, . . . , NR}, represents the antecedent FS of the jth input in the ith rule. The same

convention is used for the consequent FSs, Ck
j , j ∈ {1, . . . , NI}, k ∈ {1, . . . , NF},

represents the kth consequent FS of the jth output; while, Ch,i, h ∈ {1, . . . , NO}, i ∈
{1, . . . , NR}, represents the consequent FS of the hth output in the ith rule.

Once crisp inputs are fuzzified, FSs activate the inference engine. The inference

engine implies type-1 fuzzy output sets ΦT1 from type-1 fuzzy input sets ΣT1.

Definition 3.1.5. The firing strength fi(σ) ∈ [0, 1], i ∈ {1, . . . , NR}, of the ith rule

can be computed with the product t-norm, i.e.:

fi(σ) =

NI∏
j=1

µAj,i
(σj), i ∈ {1, . . . , NR}. (3.3)

Table 3.1: A typical 9 rules rule-base of FLC.

σ1
σ2

N Z P

N R1 : BN R2 : BN R3 : Z

Z R4 : BN R5 : Z R6 : BP

P R7 : Z R8 : BP R9 : BP

Table 3.2: A typical 27 rules rule-base of FLC.

σ1 σ2
σ3

N Z P

N R1 : BN R2 : BN R3 : SN

Z R4 : BN R5 : SN R6 : ZN

P R7 : SN R8 : Z R9 : SP

N R10 : BN R11 : SN R12 : Z

Z R13 : SN R14 : Z R15 : SPZ

P R16 : Z R17 : SP R18 : BP

N R19 : SN R20 : Z R21 : SP

Z R22 : Z R23 : SP R24 : BPP

P R25 : SP R26 : BP R27 : BP

Chapter 3. Type-1 Fuzzy Logic-Based Control 37

Remark 3.3. From Definitions 3.1.1 and 3.1.5, it can be seen that fi ∈ [0, 1],

i ∈ {1, . . . , NR}.

In other words, the inference engine manages which rules are fired. Finally, the

output of FLCs must be crisp numbers. This is accomplished by the defuzzification.

Definition 3.1.6. The hth defuzzified output, h ∈ {1, . . . , NO}, can be computed

with the centroid defuzzification, i.e.:

ϕT1
h (σ) =

∑NR

i=1 fi(σ)Ch,i∑NR

i=1 fi(σ)
, h ∈ {1, . . . , NO}. (3.4)

Remark 3.4. By substituting (3.3) into (3.4), the hth defuzzified output, h ∈
{1, . . . , NO}, can be computed as follows:

ϕT1
h (σ) =

∑NR

i=1

(∏NI

j=1 µAj,i
(σj)

)
Ch,i∑NR

i=1

(∏NI

j=1 µAj,i
(σj)

) , h ∈ {1, . . . , NO}. (3.5)

The structure of a triple-input type-1 fuzzy PID controller, which inherits triple-

input T1-FLS, is shown in Fig. 3.4. The input scaling factors kp, ki and kd are

chosen to normalize e,
∫
e and ė to the universe of discourse of the antecedent

MFs, i.e., [−1, 1]. So, e,
∫
e and ė are transformed into σ1, σ2 and σ3, respectively,

before inputting them to triple-input T1-FLS. Consequently, the output ϕT1 from

triple-input T1-FLS is transformed into the control signal u by an unscaling gain

ko such that the output is denormalized to the domain of the control signal. In the

adopted control structure, only one parameter has to be tuned, i.e., ko.

ki
∫
kp

kd
d
dt

Triple-Input
T1-FLS

ko
e

σ1

σ2

σ3

ϕT1
u

Figure 3.4: Structure of a triple-input type-1 fuzzy PID controller.

38 3.2. Singleton Fuzzy Logic Control

3.2 Singleton Fuzzy Logic Control

The input to SFLS is a singleton or crisp input:

µσ(σj) =

1, σj = cj

0, σj 6= cj,
(3.6)

where cj is the center of jth input MF. Namely, in SFLS, the fuzzifier maps a crisp

input σj into a fuzzy set Σj with support cj, as shown in Fig. 3.5a.

Remark 3.5. The fuzzifier of the SFLS does not model any vagueness for the

input. Therefore, it does not make full use of the modelling capability.

3.3 Non-Singleton Fuzzy Logic Control

On the other hand, NSFLC is T1-FLS whose inputs are modelled as type-1 FSs by

prefiltering unit, as shown in Fig. 3.6. Namely, NSFLS can be used to cope better

with noisy, imprecise or inaccurate input measurements. In NSFLS, the prefilter

maps a crisp input σj into MF µσ, e.g., Gaussian MF, as shown in Fig. 3.5b:

µσ(σj) = exp

[
−(σj − cj)2

2d2
j

]
, (3.7)

where dj is the standard deviation of the jth FS.

0 σj0

µσ
1

cj

(a) Singleton prefiltering.

0 σj0

µσ
1

cj

(b) Non-singleton Gaussian prefiltering.

Figure 3.5: Singleton and non-singleton prefiltering.

Chapter 3. Type-1 Fuzzy Logic-Based Control 39

Prefilter Fuzzifier
σ µσ Σ

Figure 3.6: Fuzzification in NSFLS.

Remark 3.6. The non-singleton fuzzifier implies that the given input value cj is

the most likely value to be correct one. Moreover, larger values of the spread dj

represent that more uncertainties, e.g., noise, are inherent within the input data.

In the literature, NSFLSs are categorised into three types, based on the type of the

prefilter:

i) NSFLC with standard prefilter [115], i.e., Sta-NSFLS;

ii) NSFLC with centroid-based prefilter [62], i.e., Cen-NSFLS;

iii) NSFLC with similarity-based prefilter [63], i.e., Sim-NSFLS.

Fig. 3.7 shows the differences among various prefilters.

3.3.1 Standard Non-Singleton Fuzzy Logic Control

In Sta-NSFLS, for calculating the input FS, the maximum of the intersection

between prefiltered input and antecedent MF is utilised:

µsta(σ) = sup min (µσ(σ), µA(σ)) . (3.8)

0 σ0

µΣ

1

σsta

µsta

σcen

µcen

µsim

µA µσ

Figure 3.7: Examples of NSFLS prefiltering with standard, centroid-based and
similarity-based prefilters.

40 3.3. Non-Singleton Fuzzy Logic Control

3.3.2 Centroid Non-Singleton Fuzzy Logic Control

In Fig. 3.8, two different prefiltered inputs are shown which are intersected with

an antecedent MF. Although the actual prefiltered inputs are different, the input

FSs calculated by the standard approach are the same in both cases. Thus, two

different inputs, or more specifically inputs with a different associated uncertainty

distribution, result in the same input FS and, thus, the same output from FLS. Hence,

a method with a more detailed capture of input uncertainty and its intersection with

the respective antecedent FS is desirable, i.e., a new method should have a higher

sensitivity to the shape of the intersection. Fig. 3.8 shows how in Sta-NSFLSs the

maximum of the intersection between different prefiltered inputs and antecedent

MF result in the same σsta and, thus, the same input FS. However, in Cen-NSFLS,

σ1,cen and σ2,cen are different when the centroid of each intersection has been applied

instead of their maximum. In Cen-NSFLS, for calculating the input FS, the centroid

of the intersection between the fuzzified input and antecedent FS is used rather

than the maximum of the intersection utilized in Sta-NSFLSs:

σcen =

∫
σµσ(σ)dσ∫
µσ(σ)dσ

. (3.9)

0 σ0

µσ
1

σstaσ2,cen σ1,cen

µsta
µ2,cen
µ1,cen

µA µσ1 µσ2

Figure 3.8: Difference of NSFLS prefiltering with standard and centroid-based
prefilters.

Chapter 3. Type-1 Fuzzy Logic-Based Control 41

3.3.3 Similarity Non-Singleton Fuzzy Logic Control

In Fig. 3.9, intersections of two different prefiltered inputs with an antecedent

FS are shown. Although, these two fuzzified inputs have two different associated

uncertainty distributions, the standard and centroid-based fuzzification for both σ1

and σ2 are the same, i.e, µσ1(σ1,cen) ≡ µσ2(σ2,cen) ≡ µσ1(σ1,sta) ≡ µσ2(σ2,sta). Hence,

a new NSFLS, which is more sensitive to the input uncertainty, is desirable. In

[63], a novel NSFLS with the similarity-based inference engine, i.e., Sim-NSFLS,

was presented and used for the well-known problem of Mackey-Glass time series

predictions. The results showed that Sim-NSFLS outperformed Sta-NSFLS and

Cen-NSFLS under different noise conditions. As shown in Fig. 3.9, µσ1,sim and

µσ2,sim are two different MFs for two different inputs based on the similarity-based

approach. Considering the prefiltered input σ and antecedent FS A with MFs µσ(σ)

and µA(σ), respectively, the similarity between σ and A is defined based on the

Jaccard similarity:

µsim =

∫
min(µσ(σ), µA(σ))dσ∫
max(µσ(σ), µA(σ))dσ

. (3.10)

0 σ0

µσ
1

σ1,sta = σ2,sta = σ1,cen = σ2,cen

µ1,sim

µ2,sim

µA

µσ1

µσ2

Figure 3.9: Difference of NSFLS prefiltering with standard, centroid-based and
similarity-based prefilters.

42 3.4. Simulation Results

3.4 Simulation Results

The 3D trajectory is defined according to the minimum snap property [116] which

enables the real-time generation of an optimal trajectory through a sequence of 3D

positions, thereby ensuring safe passage through specified environments as well as

maintaining the constraints on accelerations and velocities. Some manoeuvrable

flights were generated, e.g., descending and climbing straight lines as well as curves,

the sharp turns between the straight lines and curves, to test the control performance

of each NSFLC controller. It is noted that the generated 3D trajectory is sent to

all NSFLCs at the same time.

Different Gaussian distributions are employed in (3.7) for the input and output

MFs of FLC. Each input variable, i.e., position error ep in (2.46), its derivative ėp

and its integral
∫

ep, has three MFs, depicted in Fig. 3.2; while the output variable,

i.e., control signal u, has five MFs, depicted in Fig. 3.3. The rule-base of FLC is

defined based on the expert experience, and the rules are summarized in Table 3.2.

3.4.1 Sources of Uncertainties

In order to produce the noisy measurements p̄ =
[
x̄ ȳ z̄

]T
, the white Gaussian

noise is added to the true position:
x̄ = N (x, σ2

N)

ȳ = N (y, σ2
N)

z̄ = N (z, σ2
N),

(3.11)

where σN is the standard deviation of the position noise andN (µ, σ2) is the Gaussian

distribution with mean µ and variance σ2.

Chapter 3. Type-1 Fuzzy Logic-Based Control 43

3.4.2 Discussion

The control performance evaluation is carried out in terms of the mean squared

error (MSE) of the 3D position:

MSE =
1

ND

ND∑
i=1

‖p∗i − pi‖2 , (3.12)

where ND is the number of data samples, p∗i =
[
x∗i y∗i z∗i

]T
and pi =

[
xi yi zi

]T
are the desired and actual positions for the i-th sample, respectively.

To test and evaluate the quadrotor UAV control performances, six levels of noise

(σN = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}) and three NSFLCs (Sta-NSFLC, Cen-NSFLC

and Sim-NSFLS) with five input fuzzifications (σF = {0.2, 0.4, 0.6, 0.8, 1.0}), i.e.,

different standard deviations for input MFs, are provided. Fig. 3.10 shows the

example of three UAV flights with the same level of fuzzifier (σF = 1.0) under three

different levels of noise (σN = 0.0, σN = 0.5 and σN = 1.0). As can be seen from

Fig. 3.11, Cen-NSFLCs outperform Sta-NSFLCs, and the control performances of

Sim-NSFLCs are better than both Cen-NSFLCs and Sta-NSFLCs. In addition, the

larger values of the σF for the fuzzifier can assist the NSFLCS to achieve better

performances. Fig. 3.11 also clearly shows the control performance differences

among Sta-NSFLC, Cen-NSFLC and Sim-NSFLC.

(a) σN = 0.0 (b) σN = 0.5 (c) σN = 1.0

Figure 3.10: Trajectory tracking under three different levels of noise (σN = 0.0,
σN = 0.5 and σN = 1.0) with the same level of fuzzifier (σF = 1.0).

44 3.5. Experimental Results

0.0 0.2 0.4 0.6 0.8 1.0
Noise Level, <N [m]

0

0.2

0.4

0.6

M
S
E

[m
]

Sta-NSFLC, <F = 0:2
Cen-NSFLC, <F = 0:2
Sim-NSFLC, <F = 0:2
Sta-NSFLC, <F = 1:0
Cen-NSFLC, <F = 1:0
Sim-NSFLC, <F = 1:0

Figure 3.11: Control performances of Sta-NSFLC, Cen-NSFLC and Sim-NSFLC.

3.5 Experimental Results

Real-world quadrotor UAV flight experiments are conducted and evaluated in the

OptiTrack motion capture system laboratory at Nanyang Technological University,

Singapore. The OptiTrack system can provide real-time rigid body position mea-

surement, i.e., ground truth, in a three-dimensional space with an update rate of

240Hz and accuracy of 0.1mm. All the controllers, i.e., conventional PID, SFLC,

Tra-NSFLC, and Cen-NSFLC, are developed in C++ and integrated into ROS.

To evaluate different levels of input uncertainty affecting the control inputs of the

quadrotor UAV, four different types of flight experiments with different flight speeds

are carried out:

� Test 1: hovering at fixed position (
[
0 0 1

]
m);

� Test 2: following an eight-shaped trajectory at 1.0m/s;

� Test 3: following an eight-shaped trajectory at 1.5m/s;

� Test 4: following an eight-shaped trajectory at 2.0m/s.

Remark 3.7. In Test 1, the UAV flight speed can be considered as 0m/s.

To evaluate the robustness of each controller, the trajectory is generated using

the minimum snap property and several flight manoeuvres, such as ascending

and descending straight lines as well as curves. To evaluate the performances, all

Chapter 3. Type-1 Fuzzy Logic-Based Control 45

controllers were designed and iteratively tuned, with an emphasis on investing equal

amounts of design effort for each controller. The flight data collected from one

hundred experiments are analysed.

Remark 3.8. For the localisation of UAV, the monocular keyframe-based visual-

inertial SLAM algorithm is used. The monocular visual-inertial SLAM produces

noisy odometry because of the motion blure at higher flight speeds [117].

3.5.1 Monocular Visual-Inertial SLAM Performance

The relationship between the flight speed and uncertainty level is shown in Fig. 3.12.

To evaluate the monocular keyframe-based visual-inertial SLAM performance,

the root mean squared error (RMSE) between the ground truth and the SLAM

estimation, i.e., RMSEGE, is used. In Fig. 3.12, the average SLAM performance

results are shown with different UAV flight speeds. As can be seen from Fig. 3.12,

the SLAM algorithm obtains the best position estimation result during the UAV

hovering flight tests. As the UAV flight speed is increasing, the position estimation

accuracy is decreasing. The average RMSEGEs for Tests 2, 3 and 4 have increased

by 13.9cm, 16.0cm and 19.9cm when compared to the UAV hovering flight tests.

Fig. 3.12 also shows that increased flight speed results in higher position input

uncertainty. Similarly, experiments showed that variation amount in illumination,

reduction in detected features rotation and translation speeds are all proportionally

correlated to increasing uncertainty/noise levels in the position estimation inputs.

Test 1 Test 2 Test 3 Test 4
0

0.05

0.1

0.15

0.2

0.25

0.3

R
M

S
E

G
E

[m
]

0.057

0.196
0.217

0.256

Figure 3.12: SLAM performances under different UAV flight speeds.

46 3.5. Experimental Results

For example, the quadrotor UAV during the hovering flights always looks at the same

scene, i.e., same illumination and number of detected features, without capturing

the blurred image frames.

Fig. 3.13 shows x, y and z translation estimations (red colour) of two rounds

of the trajectory following application which is controlled by the Cen-NSFLC

with a maximum flight speed of 2.0m/s. The ground truths (black colour) of

the x, y and z translations from the OptiTrack system are used for performance

comparisons. As can be seen from Fig. 3.13, although faster flights result in more

challenging pose estimations in the monocular keyframe-based visual-inertial SLAM,

the pose estimations can match the ground truths fairly well. Therefore, the SLAM

estimations are accurate enough to be used as the control inputs in the longterm

navigation of the real-world quadrotor UAV.

(a) x translation with maximum flight speed 2.0m/s

(b) y translation with maximum flight speed 2.0m/s

(c) z translation with maximum flight speed 2.0m/s

Figure 3.13: SLAM results with maximum flight speed 2.0m/s.

Chapter 3. Type-1 Fuzzy Logic-Based Control 47

3.5.2 Discussion

The control performances of PID, SFLC, Sta-NSFLC and Cen-NSFLC are evaluated

based on the RMSE between the ground truth and the reference trajectory, i.e.,

RMSEGR. Fig. 3.14 shows the control performance results, i.e., average RMSEGRs

calculated from one hundred flight tests. From Fig. 3.14, it can be observed that

the Cen-NSFLC consistently has the best performance across all speed levels. The

control performances of the FLCs are better than those of the conventional PID

controller. On the other hand, NSFLCs can obtain superior control performance

compared to the SFLC, while Cen-NSFLC outperforms Sta-NSFLC.

Figs. 3.15 and 3.16 show the control performances of all the controllers in one round

of the trajectory following application with the maximum flight speed of 2.0m/s. As

can be seen from these three figures, all the controllers can navigate the quadrotor

UAVs to follow the online generated trajectory, but the control performance ranking

is Cen-NSFLC, Sta-NSFLC, SLFC, and PID controller. Although the Euclidean

errors of SFLC and Sta-NSFLC in some parts of the trajectory are less than the one

of Cen-NSFLC, the overall control performance of Cen-NSFLC is better than the

ones of SFLC and Sta-NSFLC. Meantime, Cen-NSFLC outperforms PID controller

during all parts of the trajectory following.

Test 1 Test 2 Test 3 Test 4
0

0.2

0.4

0.6

0.8

R
M

S
E

G
E

[m
]

PID
SFLC
Sta-NSFLC
Cen-NSFLC

Figure 3.14: Control performances of four controllers (PID, SFLC, Sta-NSFLC
and Cen-NSFLC) in four different scenarios.

48 3.6. Conclusion

(a) 3D view (b) 2D xy-view

Figure 3.15: Trajectory following performances of all controllers in Test 4.

Figure 3.16: Euclidean error evolution of all controllers in Test 4.

3.6 Conclusion

In this chapter, two novel NSFLC with center-based and similarity-based prefiltering

were developed and deployed to control a quadcopter UAV for the 3D trajectory

tracking application. A comprehensive comparison and evaluation were carried

out with three different types of NSFLCs, i.e., Sta-NSFLC, Cen-NSFLC and

Sim-NSFLC, under different levels of input uncertainty, i.e., measurement noise.

Extensive simulation and experimental tests show that Sim-NSFLC can obtain

better control performances compared to Sta-NSFLC and Cen-NSFLC, especially

at the higher input noise levels. Moreover, the higher input fuzzification has more

capability to a handle higher level of input noise.

Chapter 4

Interval Type-2 Fuzzy

Logic-Based Control

Though T1-FLCs are widely used, type-1 FSs are able to deal effectively only

with bounded levels of uncertainty, while real-world applications frequently have to

deal with high levels and multiple sources of uncertainties [4, 118]. Therefore, there

has been a growing interest in a more advanced form of FLCs, namely T2-FLCs [65].

Better handling of the uncertainties using T2-FLCs is provided by the additional

degree of freedom benefiting from FOU in their FSs [6, 119]. However, the additional

complexity arises from the inclusion of FOU as well as the third dimension [7].

Therefore, the research has tended to focus on IT2-FLCs [8], rather than on general

T2-FLCs [9], because the mathematical formulation of general T2-FLCs is much

more complex than that of IT2-FLCs [10, 74]. The adoption of IT2-FLC allows

reducing the computational complexity which is an immense benefit in real-time

applications [11].

In this chapter, potentials of different IT2-FLCs are explored under various oper-

ational conditions. First, Sections 4.1 revises the definition of IT2-FLCs. Then,

Sections 4.2 shows experimental results on quadrotor UAV. Finally, some conclusions

are drawn in Section 4.3.

Supplementary Material:

ROS package for the proposed IT2-FLCs: github.com/andriyukr/controllers.

49

https://github.com/andriyukr/controllers

50 4.1. Mathematical Preliminaries

4.1 Mathematical Preliminaries

Commonly, T2-FLS consists of five elements: fuzzifier, rule base, inference engine,

type reducer and defuzzifier. All these components are interconnected, and Fig. 4.1

shows the general structure of T2-FLS. Similarly to T1-FLS, T2-FLS can be seen

as a mapping from the crisp input σ =
[
σ1 · · · σNI

]T
, where NI is the number of

crisp inputs, to the crisp output ϕT2 =
[
ϕT2

1 · · · ϕT2
NO

]T
, where NO is the number

of crisp outputs. Initially, the fuzzifier transforms crisp inputs σ into fuzzy input

sets ΣT2.

Definition 4.1.1. If σ is a crisp input to T2-FLS, and UÃ(σ) is the universe of the

secondary variable υ, a type-2 FS Ã is described by a type-2 MF, µÃ(σ, u) ∈ [0, 1],

where σ ∈ R and υ ∈ UÃ(σ) ⊆ [0, 1], i.e.:

Ã = {(σ, υ, µÃ(σ, υ)) | µÃ(σ, υ) ∈ [0, 1] ∀σ ∈ R ∀υ ∈ UÃ(σ) ⊆ [0, 1]} . (4.1)

Definition 4.1.2. If σ is a crisp input to IT2-FLS, and UÃ(σ) is the universe of

the secondary variable υ, an interval type-2 FS Ã is described by an interval type-2

MF, µÃ(σ, υ) = 1, where σ ∈ R and υ ∈ UÃ(σ) ⊆ [0, 1], i.e.:

Ã = {(σ, υ, 1) ∀σ ∈ R ∀υ ∈ UÃ(σ) ⊆ [0, 1]} . (4.2)

In other words, in IT2-FSs, all the third dimension values are equal to one. An

example of three elliptic interval type-2 FSs are illustrated in Fig. 4.2.

Fuzzifier Inference Type reducer

Rule base Defuzzifier

σ ΣT2 F

ΦT1

ϕT2

R

Figure 4.1: Structure of the type-2 fuzzy logic system.

Chapter 4. Interval Type-2 Fuzzy Logic-Based Control 51

0 σj0

µÃj

1

−1 1

Ã1
j = N Ã2

j = Z Ã3
j = P

Figure 4.2: ”Negative” (N), ”zero” (Z) and ”positive” (P) FSs represented by
three elliptic interval type-2 MFs.

Definition 4.1.3. If σ is a crisp input to T2-FLS, FOU of FS Ã is a bounded

region (grey areas in Fig. 4.2) which is defined by the union of all µÃ(σ, υ), i.e.:

FOU(Ã) =
⋃
σ∈R

UÃ(σ). (4.3)

Definition 4.1.4. If σ is a crisp input to T2-FLS, the upper MF µÃ(σ) is MF

which confines from top FOU(Ã) (coloured solid lines in Fig. 4.2); while the lower

MF µ
Ã

(σ) is MF which confines from bottom FOU(Ã) (coloured dashed lines in

Fig. 4.2), i.e.: µÃ(σ) = FOU(Ã) ∀σ ∈ R

µ
Ã

(σ) = FOU(Ã) ∀σ ∈ R.
(4.4)

Remark 4.1. If µÃ(σ) ≡ µ
Ã

(σ) ∀σ ∈ R, then the type-2 FS Ã will degenerate to

the type-1 FS A with MF µA(σ) ≡ µÃ(σ) ≡ µ
Ã

(σ) ∀σ ∈ R.

Remark 4.2. A common way to extend a type-1 FS to an interval type-2 FS is:µÃ(σ) = µA(σ)

µ
Ã

(σ) = αµA(σ),
(4.5)

where α is the height of the lower MFs [120].

Remark 4.3. If α = 1 in (4.5), then according to Remark 4.1 the interval type-2 FS

Ã will degenerate to the type-1 FS A with MF µA(σ) ≡ µÃ(σ) ≡ µ
Ã

(σ) ∀σ ∈ R.

52 4.1. Mathematical Preliminaries

Definition 4.1.5. If NR is the number of rules in a rule-base R, then the ith rule

Ri ∈ R, i ∈ {1, . . . , NR}, is indicated as IF− THEN statement, i.e.:

Ri :
IF σ1 is Ã1,i and . . . and σNI

is ÃNI ,i,

THEN ϕ1 is C1,i and . . . and ϕNO
is CNO,i

, i ∈ {1, . . . , NR}, (4.6)

where Ãj,i, j ∈ {1, . . . , NI}, represents antecedent FS; while Ch,i, h ∈ {1, . . . , NO},
represents consequent FS.

Remark 4.4. In T2-FLS, the structure of the rule-base remains exactly the same

as in T1-FLS.

Remark 4.5. Similarly to T1-FLS, Ãkj , j ∈ {1, . . . , NI}, k ∈ {1, . . . , NF}, rep-

resents the kth antecedent FS of the jth input; while, Ãj,i, j ∈ {1, . . . , NI}, i ∈
{1, . . . , NR}, represents the antecedent FS of the jth input in the ith rule.

Once the crisp inputs are fuzzified, FSs activate the inference engine. The inference

engine implies type-2 fuzzy output sets F from type-2 fuzzy input sets ΣT2.

Definition 4.1.6. The set of firing strengths Fi(σ) ∈ [0, 1]2, i ∈ {1, . . . , NR}, of

the i-th rule can be computed with the product t-norm [121], i.e.:

Fi(σ) =

[
f i(σ) =

∏NI

j=1 µÃj,i
(σj)

f
i
(σ) =

∏NI

j=1 µÃj,i
(σj)

]
, i ∈ {1, . . . , NR}. (4.7)

Consequently, the type reducer maps a type-2 FS F into a type-1 FS ΦT1 [122].

Definition 4.1.7. The hth left and right end-points of the type-reduced set ϕL,h

and ϕR,h, respectively, h ∈ {1, . . . , NO}, can be computed with KM centroid type-

reduction algorithm [123]:
ϕL,h(σ) =

∑L
i=1 f i(σ)Ch,i+

∑N
i=L+1 f i(σ)Ch,i∑L

i=1 f i(σ)+
∑N

i=L+1 f i(σ)

ϕR,h(σ) =
∑R

i=1 f i(σ)Ch,i+
∑N

i=R+1 f i(σ)Ch,i∑R
i=1 f i(σ)+

∑N
i=R+1 f i(σ)

, h ∈ {1, . . . , NO}, (4.8)

in which L and R are the left and right switching points, respectively. Usually, L

and R are computed by an iterative algorithm.

The output of FLCs must be a crisp number, this is accomplished by the defuzzifier.

Chapter 4. Interval Type-2 Fuzzy Logic-Based Control 53

Definition 4.1.8. The hth defuzzified output, h ∈ {1, . . . , NO}, can be computed

with the average defuzzification, i.e.:

ϕIT2
h (σ) =

ϕL,h(σ) + ϕR,h(σ)

2
, h ∈ {1, . . . , NO}. (4.9)

Remark 4.6. By combining (4.7), (4.8) and (4.9), the hth defuzzified output,

h ∈ {1, . . . , NO}, can be computed as follows:

ϕIT2
h (σ) =

∑L
i=1

(∏NI

j=1 µÃj,i
(σj)

)
Ch,i +

∑N
i=L+1

(∏NI

j=1 µÃj,i
(σj)

)
Ch,i

2
∑L

i=1

(∏NI

j=1 µÃj,i
(σj)

)
+
∑N

i=L+1

(∏NI

j=1 µÃj,i
(σj)

)
+

∑R
i=1

(∏NI

j=1 µÃj,i
(σj)

)
Ch,i +

∑N
i=R+1

(∏NI

j=1 µÃj,i
(σj)

)
Ch,i

2
∑R

i=1

(∏NI

j=1 µÃj,i
(σj)

)
+
∑N

i=R+1

(∏NI

j=1 µÃj,i
(σj)

) ,

h ∈ {1, . . . , NO}.

(4.10)

The structure of a double-input interval type-2 fuzzy PD controller, which inherits

double-input IT2-FLS, is shown in Fig. 4.3. The input scaling factors kp and kd are

chosen to normalize e and ė to the universe of discourse of the antecedent MFs, i.e.,

[−1, 1]. So, e and ė are transformed into σ1 and σ2, respectively, before inputting

them to double-input IT2-FLS. Consequently, the output ϕT2 from double-input

IT2-FLS is transformed into the control signal u by using an unscaling gain ko such

that the output is denormalized to the domain of the control signal. In the adopted

control structure, only one parameter has to be tuned, i.e., ko.

kp

kd
d
dt

Double-Input
IT2-FLS

ko
e

σ1

σ2

ϕT2
u

Figure 4.3: Structure of a double-input single-output interval type-2 fuzzy PD
controller.

54 4.2. Experimental Results

4.2 Experimental Results

The antecedent MFs are defined as novel elliptic IT2-FSs which are depicted in

Fig. 4.2. The conventional way to represent elliptic IT2-FSs is

µÃk
j
(σj) =


a1

√
1−

∣∣∣σj−cj,kdj,k

∣∣∣a1 , cj,k − dj,k ≤ σj ≤ cj,k + dj,k

0 , σj < cj,k − dj,k, cj,k + dj,k < σj

µ
Ãk

j

(σj) =


a2

√
1−

∣∣∣σj−cj,kdj,k

∣∣∣a2 , cj,k − dj,k ≤ σj ≤ cj,k + dj,k

0 , σj < cj,k − dj,k, cj,k + dj,k < σj,

(4.11)

where cj,k and dj,k are centers and widths of MFs, respectively. The parameters a1

and a2 determine the width of FOU of each MF, and these parameters should be

selected in the following form:  a1 ≥ 1

0 ≤ a2 ≤ 1.
(4.12)

4.2.1 Setup

The experimental flight tests for the trajectory tracking problem were conducted in

the indoor environment. The laboratory environment is designed to use a set of

eight OptiTrack Prime 13 cameras, to provide real-time pose (position and attitude)

of the UAV with an update rate of 240Hz and accuracy around 0.1mm. The pose

data are routed to the controller through the local network. The aircraft used for

the experimental flight tests is Parrot Bebop 2 UAV, which is an attitude controlled

commercial quadrotor. The Bebop Autonomy ROS package is used to communicate

the output velocity from the controller to the quadrotor via a Wi-Fi connection.

4.2.2 Trajectory

In the experimental scenario, a circle with radius 2m is chosen for the trajectory

tracking problem. To test the stability and robustness of the controllers, the

reference speed varies along the trajectory. The profile of the desired velocity is

designed in a way to have different velocity conditions for each quarter of the circle,

Chapter 4. Interval Type-2 Fuzzy Logic-Based Control 55

as shown in Fig. 4.4. In the first quarter (t ∈ [0, π/2)), the speed gradually increases

from 0m/s to 2m/s. In the second quarter (t ∈ [π/2, π)), the speed is kept constant

at 2m/s. In the third quarter (t ∈ [π, 3π/2)), the speed is increased again to reach

4m/s. Finally, in the fourth quarter (t ∈ [3π/2, 2π)), the speed is decreased to 0m/s.

Then, the new circle starts and the velocity profile is repeated.

4.2.3 Discussion

The experimental results are evaluated through the most commonly used error-based

measures, i.e., root mean squared error (RMSE):

RMSE =

√√√√ 1

ND

ND∑
i=1

(p∗i − pi)
2, (4.13)

maximum absolute error (MAX):

MAX = max
i∈ND

‖p∗i − pi‖ , (4.14)

and mean absolute error (MAE):

MAE =
1

ND

ND∑
i=1

‖p∗i − pi‖ , (4.15)

where ND is the number of data samples, p∗i =
[
x∗i y∗i z∗i

]T
and pi =

[
xi yi zi

]T
are desired and actual position for the i-th sample, respectively.

0 /2 3* /2 2* 5* /2 3* 7* /2 4*
0

2

4
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Figure 4.4: Velocity profile of the desired trajectory.

56 4.2. Experimental Results

In Fig. 4.5, the trajectory tracking performance of interval type-2 fuzzy logic

controller with elliptic MFs is compared with the performances of conventional

PD controller, type-1 fuzzy logic controllers with Gaussian and elliptic MFs, and

type-2 fuzzy logic controllers with Gaussian MFs. The projections of the trajectory

on x, y and z axes of five complete circles are shown in Fig. 4.6. As can be seen,

the steady-state error is reduced because of the filtering capabilities of fuzzy logic

controllers. This can also be seen from the Euclidean error and the average RMSE

values from ten experiments which are shown in Fig. 4.7 and Table 4.1.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Q1

Q2Q3

Q4

Figure 4.5: 3D trajectory tracking by five different controllers.

0 5 10 15 20 25 30

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) x-axis tracking.

0 5 10 15 20 25 30

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(b) y-axis tracking.

0 5 10 15 20 25 30

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

(c) z-axis tracking.

Figure 4.6: Projection of trajectory tracking along x, y and z axes by five different
controllers.

Chapter 4. Interval Type-2 Fuzzy Logic-Based Control 57

0 5 10 15 20 25 30

0

0.5

1

1.5

2

2.5

Figure 4.7: Euclidean error of different controllers.

4.3 Conclusion

Whereas type-1 and type-2 MFs are the core of any fuzzy logic system, there

are no performance criteria available to evaluate the goodness or correctness of

fuzzy MFs. In this chapter, an extensive analysis in terms of the capability of

interval type-2 elliptic fuzzy MFs in modelling uncertainty has been done. Having

decoupled parameters for its support and width, elliptic MFs are unique amongst

existing type-2 fuzzy MFs. In this investigation, the uncertainty distribution along

the elliptic MF support is studied, and a detailed analysis is given to compare

and contrast its performance with existing type-2 fuzzy MFs. Moreover, to test

the performance of FLC with elliptic interval type-2 MFs, extensive real-time

experiments are conducted for the 3D trajectory tracking problem of a quadrotor.

The results of this study might open the doors to wider use of elliptic MFs for

real-world identification and control applications as the proposed MF is easy to

interpret in addition to its unique features.

Table 4.1: Comparison results for the error from different controllers.

Controller RMSE MAX MAE

PD 1.595 2.224 1.490

T1-FLC with Gaussian MFs 1.455 2.326 1.339

T1-FLC with elliptic MFs 1.418 2.296 1.277

IT2-FLC with Gaussian MFs 1.445 2.432 1.309

IT2-FLC with elliptic MFs 1.416 2.361 1.270

Chapter 5

Fuzzy Mapping-Based Control

The mathematical expression of FM provides an efficient tool to analytically

study FLCs [124]. In addition, modern computers can perform the basic algebraic

operations, e.g., additions, subtractions, multiplication and divisions, much more

efficiently than the operations on FSs, e.g., unions, intersections and implications,

needed in fuzzy logic [12]. Therefore, the availability of an analytical form of FM

will open new doors to the use of FLCs in real-time applications. Recently, FM for

the single-input IT2-FLC case has been derived in [120]. Nevertheless, an exhaustive

analysis of FM for Mamdani double-input FLCs and real-time validation of the

theoretical claims are still missing in the literature [84]. Moreover, the study of

some properties of FM for double-input FLCs, such as symmetry and monotonicity,

are missing in the literature.

In this chapter, an alternative method to derive and analyse FM for FLCs is

proposed. First, Sections 5.1 revises the definition of FM. Sections 5.2 and 5.3

present derivation and analysis of FM for T1-FLCs and for IT2-FLCs, respectively.

Then, Sections 5.4 and 5.5 show simulation and experimental results quadrotor

UAV, respectively. Finally, some conclusions are drawn in Section 5.6.

Supplementary Material:

Matlab code for the FM generation: github.com/andriyukr/FM.

ROS package for the proposed FM controllers: github.com/andriyukr/controllers.

Video for the simulation results: tiny.cc/FM-FLC simulation.

Video for the experimental results: tiny.cc/FM-FLC.

59

https://github.com/andriyukr/FM
https://github.com/andriyukr/controllers
http://tiny.cc/FM-FLC_simulation
http://tiny.cc/FM-FLC

60 5.1. Mathematical Preliminaries

5.1 Mathematical Preliminaries

Generally, FLS can be seen as a mapping from crisp input σ =
[
σ1 · · · σNI

]T
,

where NI is the number of crisp inputs, to crisp output ϕ =
[
ϕ1 · · · ϕNO

]T
,

where NO is the number of crisp outputs [115].

Definition 5.1.1. In a general FLS, FM from σ ∈ RNI to ϕ ∈ RNO is a function

ϕ(σ) : RNI → RNO .

In order to facilitate the analytical derivation, FM of double-input FLSs is considered.

However, the presented approach can be applied to FLSs with an arbitrary number

of inputs.

Definition 5.1.2. In a double-input FLS, FM from σ =
[
σ1 σ2

]T
∈ R2 to ϕ ∈ R

is a function ϕ(σ) : R2 → R.

Remark 5.1. The unit double-input FM ϕT0(σ) is defined as:

ϕT0(σ) =
σ1 + σ2

2
. (5.1)

Definition 5.1.3. The aggressiveness ε of FM is the value of its gradient δ(σ) =

∇ϕ(σ) in the neighbourhood of the equilibrium point (0, 0) and in the direction of

the unit vector ŵ, i.e.:

ε = ŵT δ(0, 0). (5.2)

Remark 5.2. If the gradient of ϕT0(σ) is δT0(σ) = ∇ϕT0(σ), and ŵ =
[

1√
2

1√
2

]T
,

which is the unit vector in the direction of
[
σ1 σ2

]T
, then the aggressiveness of

the unit mapping in (5.1) is calculated as follows:

εT0 = ŵT δT0(0, 0) =
[

1√
2

1√
2

] [1
2
1
2

]
=

√
2

2
. (5.3)

Chapter 5. Fuzzy Mapping-Based Control 61

5.2 Type-1 Fuzzy Mapping

Definition 5.2.1. In double-input T1-FLS (DI-T1-FLS), FM from σ =
[
σ1 σ2

]T
∈

R2 to ϕT1 ∈ R is a function ϕT1(σ) : R2 → R.

In order to facilitate the analytical derivation, the antecedent MFs are designed to

be triangular type-1 FSs, as illustrated in Fig. 5.1. The typical representation of a

triangular MF is [125]:

µAk
j
(σj) =



0 , σj < ak−1

σj−ak−1

ak−ak−1
, ak−1 ≤ σj ≤ ak

ak+1−σj
ak+1−ak

, ak < σj ≤ ak+1

0 , σj > ak+1,

(5.4)

where k ∈ {1, 2, 3} and j ∈ {1, 2}. From Fig. 5.1 can be seen that a0 = −∞,

a1 = −1, a2 = 0, a3 = 1 and a4 = +∞. Besides, the consequent MFs are designed

to be singleton, as illustrated in Fig. 3.3. Moreover, the rule-base in Table 3.1 is

used.

For the analytical analysis, complex symbolic computations are needed. Thus, an

equivalent definition of (5.4) is used:

µAk
j
(σj) = max

(
min

(
σj − ak−1

ak − ak−1

,
ak+1 − σj
ak+1 − ak

)
, 0

)
, (5.5)

0 σj0

µAj

1

−1 1

αj

A1
j = N A2

j = Z A3
j = P

Figure 5.1: ”Negative” (N), ”zero” (Z) and ”positive” (P) FSs represented by
three triangular type-1 MFs.

62 5.2. Type-1 Fuzzy Mapping

where max() and min() functions are reformulated as algebraical functions:max (a, b) = a+b+|a−b|
2

min (a, b) = a+b−|a−b|
2

∀a ∈ R ∀b ∈ R. (5.6)

5.2.1 Derivation of Fuzzy Mapping for DI-T1-FLS

The rule-base in Table 3.1 contains nine rules; consequently, NR = 9. By using (3.5),

the output from FLS is as follows:

ϕT1(σ) =

∑9
i=1 µA1,i

(σ1) · µA2,i
(σ2) · Ci∑9

i=1 µA1,i
(σ1) · µA2,i

(σ2)
. (5.7)

Then, combining Definition 3.1.4, Table 3.1 and Fig. 5.1, it is clear that µA1,1 =

µA1,2 = µA1,3 = µA2,1 = µA2,4 = µA2,7 = µA1 , µA1,4 = µA1,5 = µA1,6 = µA2,2 = µA2,5 =

µA2,8 = µA2 and µA1,7 = µA1,8 = µA1,9 = µA2,3 = µA2,6 = µA2,9 = µA3 , which are

defined in (5.5). Combining Definition 3.1.4, Table 3.1 and Fig. 3.3, it is clear that

C1 = C2 = C4 = C1 = −1, C3 = C5 = C7 = C3 = 0, and C6 = C8 = C9 = C5 = 1.

Hence, after performing some simplifications in (5.7), ϕT1(σ) is obtained:

ϕT1(σ) = σ1 + σ2 −
|σ1|σ2 + σ1|σ2|

2
. (5.8)

The expression in (5.8) describes DI-T1-FLS in an analytical form. Therefore,

instead of considering DI-T1-FLS as a grey-box, its symbolic representation, i.e.,

ϕT1(σ), can be used. The generated fuzzy surface, which maps the two inputs σ1

and σ2 to the output ϕ, is plotted in Fig. 5.2.

5.2.2 Analysis of Fuzzy Mapping for DI-T1-FLS

From the asymptotic computational analysis, the runtime complexity for T1-FLS

represented by (3.5) is O(2RINRRO) which is linear w.r.t. NI , NR and NO. While

the runtime complexity of FM for T1-FLS represented by (5.8) is O(1) which is

constant. Therefore, independently on the number of inputs, rules and outputs in

T1-FLS, the computational complexity of FM for T1-FLS is constant.

Chapter 5. Fuzzy Mapping-Based Control 63

-1
1 1

0.50.5

σ1σ2

0 0

0

ϕ
T
1
(σ

1
,
σ
2
)

-0.5-0.5

-1 -1

1

Figure 5.2: Fuzzy surface generated by DI-T1-FLS.

The gradient of ϕT1(σ) is δT1(σ) = ∇ϕT1(σ). If ŵ =
[

1√
2

1√
2

]T
which is the unit

vector in the direction of
[
σ1 σ2

]
, by using Definition 5.1.3, the aggressiveness of

ϕT1 becomes:

εT1 = ŵT δT1(0, 0) =
[

1√
2

1√
2

] [1

1

]
=
√

2. (5.9)

Therefore, the aggressiveness of DI-T1-FLS is constant. From (5.9) and (5.3), it

can be observed that ϕT1(σ) is more aggressive than ϕ0(σ) in the neighbourhood

of (0, 0), since εT1 > εT0.

Theorem 5.2.1 (Symmetry of type-1 FM). If ϕT1(σ) indicates FM of DI-T1-FLS,

then

i) ϕT1(σ1, σ2) is an even symmetric function w.r.t. the bisection of the first

(σ1 > 0, σ2 > 0) and third (σ1 < 0, σ2 < 0) quadrants in the Cartesian plane,

i.e., ϕT1(σ1, σ2) = ϕT1(σ2, σ1) ∀σ1 ∈ [−1, 1] ∀σ2 ∈ [−1, 1];

ii) ϕT1(σ1, σ2) is an odd symmetric function w.r.t. the bisection of the second

(σ1 > 0, σ2 < 0) and fourth (σ1 < 0, σ2 > 0) quadrants in the Cartesian plane,

i.e., ϕT1(−σ1,−σ2) = −ϕT1(σ1, σ2) ∀σ1 ∈ [−1, 1] ∀σ2 ∈ [−1, 1].

Proof. Using (5.8), it follows:

i) ϕT1(σ1, σ2) = σ1 + σ2 − |σ1|σ2+σ1|σ2|
2

and ϕT1(σ2, σ1) = σ2 + σ1 − |σ2|σ1+σ2|σ1|
2

;

therefore, ϕT1(σ1, σ2) = ϕT1(σ2, σ1) ∀σ1 ∈ [−1, 1] ∀σ2 ∈ [−1, 1];

64 5.2. Type-1 Fuzzy Mapping

ii) ϕT1(−σ1,−σ2) = −σ1 − σ2 − −|σ1|σ2−σ1|σ2|
2

= −σ1 − σ2 + |σ1|σ2+σ1|σ2|
2

=

−ϕT1(σ1, σ2); therefore, ϕT1(−σ1,−σ2) = −ϕT1(σ1, σ2) ∀σ1 ∈
[−1, 1] ∀σ2 ∈ [−1, 1].

Corollary 5.2.1.1. Using the second property in Theorem 5.2.1, ϕT1(σ) can be

rewritten as:

ϕT1(σ) = −ϕT1(−σ). (5.10)

Theorem 5.2.2 (Continuity of type-1 FM). If ϕT1(σ) indicates FM of DI-T1-FLS,

then ϕT1(σ) is a continuous function in the region [−1, 1]2 w.r.t. its input variable

σ, i.e., ϕT1 ∈ C0([−1, 1]2).

Proof. First, (5.8) is decomposed into two components: ϕT1,1(σ) = σ1 + σ2 and

ϕT1,2(σ) = |σ1|σ2+σ1|σ2|
2

. Since ϕT1,1(σ) is a polynomial function, it is continuous on

R2. On the other side, it can be observed that lim
σ1→c

ϕT1,2(σ) = ϕT1,2(c) ∀c ∈ R2.

Therefore, ϕT1,2(σ) is also continuous on R2. Since ϕT1(σ) is a linear combination of

continuous functions, i.e., ϕT1(σ) = ϕT1,1(σ)−ϕT1,2(σ), ϕT1(σ) is also a continuous

function.

Corollary 5.2.2.1. If the control inputs to the double-input type-1 fuzzy

PD (DI-T1-FPD) controller are continuous, then the control output from

DI-T1-FPD controller is also continuous.

Theorem 5.2.3 (Monotonicity of type-1 FM). If ϕT1(σ) indicates FM

of DI-T1-FLS, then ϕT1(σ) is a monotonic increasing function in the region [−1, 1]2

w.r.t. its input variables σ, i.e., ∂ϕT1

∂σ1
≥ 0 ∧ ∂ϕT1

∂σ2
≥ 0 ∀σ ∈ [−1, 1]2.

Proof. From 5.8, ∂ϕT1

∂σ1
= 1 − σ2sign(σ1)−|σ2|

2
. By observing that |σ2| = σ2sign(σ2),

∂ϕT1

∂σ1
= 1 − σ2(sign(σ1)−sign(σ2))

2
, in which σ2(sign(σ1)−sign(σ2))

2
∈ [−1, 1] ∀σ ∈ [−1, 1]2.

Consequently, ∂ϕT1

∂σ1
∈ [0, 2] ∀σ ∈ [−1, 1]2, and, thus, ∂ϕT1

∂σ1
≥ 0 ∀σ ∈ [−1, 1]2.

From which follows that ϕ(σ) is an increasing function w.r.t. σ1 ∀σ ∈ [−1, 1]2.

From the first result in Theorem 5.2.1, if ∂ϕT1

∂σ1
≥ 0 ∀σ ∈ [−1, 1]2, then ∂ϕT1

∂σ2
≥

0 ∀σ ∈ [−1, 1]2. Therefore, ϕT1 is a monotonic increasing in the region [−1, 1]2

w.r.t. its input variables σ1 and σ2.

Chapter 5. Fuzzy Mapping-Based Control 65

5.3 Interval Type-2 Fuzzy Mapping

Definition 5.3.1. In double-input IT2-FLS (DI-IT2-FLS), FM from σ =[
σ1 σ2

]T
∈ R2 to ϕIT2 ∈ R is a function ϕIT2(σ) : R2 → R.

As described in Remark 4.2, type-1 FSs in Fig. 5.1 can be extended to interval

type-2 FSs in depicted Fig. 5.3.

5.3.1 Derivation of Fuzzy Mapping for DI-IT2-FLS

By observing the structure of the rule-base for double-input FLS in Table 3.1, each

consequent MF (BN, Z, BP) can be implied from exactly three rules. Consequently,

L and R in Definition 4.1.7 are multiples of 3 in the interval (1, NR = 9), i.e.,

L ∈ {3, 6} ∧ R ∈ {3, 6}. By using the constraint that L ≤ R, three distinct cases

for the switching points can be determined, i.e., < {L = 3, R = 3}, {L = 3, R =

6}, {L = 6, R = 6} >. Each of these cases defines a region (Ω1, Ω2, Ω3) on [σ1× σ2]

plane, as shown in Fig. 5.4. Hence, Ω1, Ω2 and Ω3 are analytically defined as:
Ω1 = {{σ1, σ2} ∈ [−1, 1]2 | σ2 ≥ −1, σ2 ≤ ω12(σ1)}

Ω2 = {{σ1, σ2} ∈ [−1, 1]2 | σ2 > ω12(σ1), σ2 < ω23(σ1)}

Ω3 = {{σ1, σ2} ∈ [−1, 1]2 | σ2 ≥ ω23(σ1), σ2 ≤ 1} ,

(5.11)

0 σj0

µσj

1

−1 1

αj

Ã1
j = N Ã2

j = Z Ã3
j = P

Figure 5.3: ”Negative” (N), ”zero” (Z) and ”positive” (P) FSs represented by
three triangular interval type-2 MFs.

66 5.3. Interval Type-2 Fuzzy Mapping

-1

-0.5

0

0.5

1

σ
2

-1 -0.5 0 0.5 1

σ1

ω12

ω23

Ω1

Ω2

Ω2

Ω3

Figure 5.4: Three regions of DI-IT2-FLC FM and two contours between these
regions.

where ω12 and ω23 are the contours which separate Ω1 from Ω2 and Ω2 from Ω3,

respectively. For each region corresponds FM, i.e., ϕIT2
1 (σ), ϕIT2

2 (σ) and ϕIT2
3 (σ).

Thus, ϕIT2(σ) can be broken down by using (4.9):

ϕIT2(σ) =


ϕIT2

1 (σ) = ϕL=3(σ)+ϕR=3(σ)
2

, σ ∈ Ω1

ϕIT2
2 (σ) = ϕL=3(σ)+ϕR=6(σ)

2
, σ ∈ Ω2

ϕIT2
3 (σ) = ϕL=6(σ)+ϕR=6(σ)

2
, σ ∈ Ω3.

(5.12)

The determination of the left and right end-points allows to derive the output

of DI-IT2-FLS in a closed-form. Therefore, it is possible to find FM ϕ(σ) by

substituting (4.7) into (4.8):

ϕL=3(σ) = σ1(σ2+1)−σ1σ2+σ2(σ1+1)
α1α2(σ1+1)(σ2+1)−σ1−σ2(σ1+1)

ϕL=6(σ) = α1α2σ2−α1α2σ1(σ2−1)
(σ1−1)(σ2−1)+α1α2(σ1+σ2−σ2σ1)

ϕR=3(σ) = α1α2σ1+α1α2σ2(σ1+1)
(σ1+1)(σ2+1)−α1α2(σ1σ2+σ1+σ2)

ϕR=6(σ) = σ1(1−σ2)+σ1σ2−σ2(1−σ1)
α1α2(σ1−1)(σ2−1)−σ1−σ2(σ1−1)

,

(5.13)

Chapter 5. Fuzzy Mapping-Based Control 67

Now, ϕIT2
1 (σ), ϕIT2

2 (σ) and ϕIT2
3 (σ) are computed with (5.12) and (5.13):

ϕIT2
1 (σ) = 1

2

(
α1α2(σ1σ2−σ1−σ2)

(σ1−1)(σ2−1)+α1α2(σ1+σ2−σ2σ1)
+ σ1σ2−σ1−σ2

α1α2(σ1−1)(σ2−1)+σ1+σ2−σ1σ2

)
ϕIT2

2 (σ) = 1
2

(
σ2(σ1+1)−α1α2σ1(σ2−1)

σ2(σ1+1)−α1α2σ1−α1α2(σ1+1)(σ2−1)
− σ1(σ2−1)−α1α2σ2(σ1+1)

σ1(σ2−1)+α1α2σ2−α1α2(σ1+1)(σ2−1)

)
ϕIT2

3 (σ) = 1
2

(
α1α2(σ1+σ2−σ1σ2)

(σ1−1)(σ2−1)+α1α2σ1−α1α2σ2(σ1−1)
− σ1σ2−σ1−σ2

σ1+σ2−σ1σ2+α1α2(σ1−1)(σ2−1)

)
.

(5.14)

Finally, by definition the contours which separate Ω1 from Ω2 and Ω2 from Ω3,

respectively, are: ω12 = {σ ∈ [−1, 1]2 | ϕR=3(σ) = ϕR=6(σ)}

ω23 = {σ ∈ [−1, 1]2 | ϕL=3(σ) = ϕL=6(σ)} ,
(5.15)

ω12 and ω23 are computed as functions of only σ1 with (5.13):

ω12(σ1) =


−α1α2σ1

σ1−α1α2σ1+1
, σ1 < 0

−σ1
σ1+α1α2−α1α2σ1

, σ1 ≥ 0
(5.16)

and

ω23(σ1) =


−σ1

α1α2−σ1+α1α2σ1
, σ1 < 0

−α1α2σ1
α1α2σ1−σ1+1

, σ1 ≥ 0.
(5.17)

The expression in (5.14) describes DI-IT2-FLS in an analytical form. Therefore,

instead of considering DI-IT2-FLC as a gray-box, its explicit representation in

(5.14), i.e., ϕIT2(σ), can be used.

Remark 5.3. If α1 = 1 and α2 = 1, then ϕIT2(σ) in (5.14) will degenerate to

ϕT1(σ) in (5.8).

Remark 5.4. It can be observed from (5.13), (5.14), (5.16) and (5.17) that α1 and

α2 are always coupled, i.e., α1α2. Therefore, it makes sense to perform the analysis

only w.r.t. α = α1α2. The reason why α1 and α2 are always coupled is because the

meet operation used to compute the lower firing strengths f
i
(σ), i ∈ [1, NR], in

(4.7), is the product t-norm.

68 5.3. Interval Type-2 Fuzzy Mapping

5.3.2 Analysis of Fuzzy Mapping for DI-IT2-FLS

From the asymptotic computational analysis, the runtime complexity for IT2-FLC

represented by (4.10) is O(4NINRNO) which is linear w.r.t. NI , NR and NO. While

the runtime complexity of FM for IT2-FLC represented by (5.14) is O(3) which is

constant. Therefore, independently on the number of inputs, rules and outputs, the

computational complexity of FM for IT2-FLC is constant.

The gradient of ϕIT2(σ) is δIT2(σ) = ∇ϕIT2(σ). If ŵ =
[

1√
2

1√
2

]T
which is the

unit vector in the direction of
[
σ1 σ2

]
, by using Definition 5.1.3, the aggressiveness

of ϕIT2 becomes:

εIT2 = ŵT δIT2(0, 0) =

√
2

2

(
α +

1

α

)
. (5.18)

This relation is depicted in Fig. 5.5. For small values of α, the behaviour of

DI-IT2-FLC becomes more aggressive around (0, 0); while, for high values of α, the

behaviour of DI-IT2-FLC becomes less aggressive around (0, 0).

Remark 5.5. It is noted that ϕT1(σ) is not more aggressive than ϕIT2(σ), since

εIT2 ≥ εT1 ∀α and εIT2 = εT1 only when α = 1. Consequently, it is noted that

ϕT0(σ) is less aggressive than ϕIT2(σ), since εIT2 > εT0 ∀α.

The generated FSs, which map σ1 and σ2 to ϕIT2(σ1, σ2), are plotted in Fig. 5.6 for

α ∈ {0.01, 0.04, 0.09, 0.16, 0.25, 0.36, 0.49, 0.64, 0.81}. Distinct FSs can be generated

by simply varying only one parameter of FOU, i.e., α.

Figure 5.5: Relation between aggressiveness of ϕIT2(σ) and α.

Chapter 5. Fuzzy Mapping-Based Control 69

-1
1 1

0.5 0.5

σ1σ2

0 0

0

ϕ
(σ

1
,
σ
2
)

-0.5 -0.5

-1-1

1

(a) α = 0.01.

-1
11

0.50.5

σ1σ2

0 0

0

ϕ
(σ

1
,
σ
2
)

-0.5-0.5

-1 -1

1

(b) α = 0.04.

-1
11

0.50.5

σ1σ2

00

0

ϕ
(σ

1
,
σ
2
)

-0.5 -0.5

-1 -1

1

(c) α = 0.09.

-1
11

0.50.5

σ2 σ1

00

0

ϕ
(σ

1
,
σ
2
)

-0.5 -0.5

-1-1

1

(d) α = 0.16.

-1
11

0.5 0.5

σ1σ2

00

0

ϕ
(σ

1
,
σ
2
)

-0.5-0.5

-1 -1

1

(e) α = 0.25.

-1
1 1

0.50.5

σ1σ2

0 0

0

ϕ
(σ

1
,
σ
2
)

-0.5-0.5

-1 -1

1

(f) α = 0.36.

-1
1 1

0.50.5

σ1σ2

0 0

0

ϕ
(σ

1
,
σ
2
)

-0.5-0.5

-1 -1

1

(g) α = 0.49.

-1
1 1

0.50.5

σ1σ2

0 0

0

ϕ
(σ

1
,
σ
2
)

-0.5-0.5

-1 -1

1

(h) α = 0.64.

-1
1 1

0.5 0.5

σ1σ2

0 0

0

ϕ
(σ

1
,
σ
2
)

-0.5-0.5

-1-1

1

(i) α = 0.81.

Figure 5.6: Fuzzy surface generated by DI-IT2-FLS for different values of α.

Theorem 5.3.1 (Symmetry of interval type-2 FM). If ϕIT2(σ) indicates FM of

DI-IT2-FLS, then

i) ϕIT2(σ1, σ2) is an even symmetric function w.r.t. the bisection of the first

(σ1 > 0, σ2 > 0) and third (σ1 < 0, σ2 < 0) quadrants in the Cartesian plane,

i.e., ϕIT2(σ1, σ2) = ϕIT2(σ2, σ1) ∀σ1 ∈ [−1, 1] ∀σ2 ∈ [−1, 1];

ii) ϕIT2(σ1, σ2) is an odd symmetric function w.r.t. the bisection of the second

(σ1 > 0, σ2 < 0) and fourth (σ1 < 0, σ2 > 0) quadrants in the Cartesian plane,

i.e., ϕIT2(−σ1,−σ2) = −ϕIT2(σ1, σ2) ∀σ1 ∈ [−1, 1] ∀σ2 ∈ [−1, 1].

70 5.3. Interval Type-2 Fuzzy Mapping

Proof.

i) To prove this property, the sufficient and necessary conditions are

ϕIT2
1 (σ1, σ2) = ϕIT2

1 (σ2, σ1), ϕ
IT2
2 (σ1, σ2) = ϕIT2

2 (σ2, σ1) and ϕIT2
3 (σ1, σ2) =

ϕIT2
3 (σ2, σ1), which is immediate from (5.14).

ii) To prove this property, the sufficient and necessary conditions are

ϕIT2
1 (−σ1,−σ2) = −ϕIT2

1 (σ1, σ2) and ϕIT2
2 (−σ1,−σ2) = −ϕIT2

2 (σ1, σ2), which

is immediate from (5.14).

Corollary 5.3.1.1. Using the second property in Theorem 5.3.1, ϕ3(σ) can be

rewritten as:

ϕ3(σ) = −ϕ1(−σ). (5.19)

Lemma 5.3.2. If ϕL=3(σ), ϕL=6(σ), ϕR=3(σ) and ϕR=6(σ) indicate left and right

FMs of the type-reduced set, ω12 and ω23 are the switching borders between ϕR=3(σ)

and ϕR=6(σ) and between ϕL=3(σ) and ϕL=6(σ), respectively, thenϕL=3(σ) = ϕL=6(σ) = 0 | σ2 = ω23(σ1) ∀σ1

ϕR=3(σ) = ϕR=6(σ) = 0 | σ2 = ω12(σ1) ∀σ1.
(5.20)

Proof. By substituting (5.16) and (5.17) into (5.13), it is possible to observe

that ϕR=3(σ1, ω12(σ1)) = 0 ∧ ϕR=6(σ1, ω12(σ1)) = 0 ∧ ϕL=3(σ1, ω23(σ1)) = 0 ∧
ϕL=6(σ1, ω23(σ1)) = 0.

Theorem 5.3.3 (Continuity of interval type-2 FM). If ϕIT2(σ) indicates FM of

DI-IT2-FLS, then ϕIT2(σ) is a continuous function in the region [−1, 1]2 w.r.t. its

input variable σ, i.e., ϕIT2 ∈ C0([−1, 1]2).

Proof. As can be observed from (5.13), no vertical asymptotes exist in ϕL=3(σ),

ϕL=6(σ), ϕR=3(σ) and ϕR=6(σ) in their domains of definition Ω1 ∪ Ω2, Ω3,

Ω1 and Ω2 ∪ Ω3, respectively. Namely, lim
σ→c

ϕL=3(σ) = ϕL=3(c) ∀σ ∈ Ω1 ∪
Ω2 ∧ lim

σ→c
ϕL=6(σ) = ϕL=6(c) ∀σ ∈ Ω3 ∧ lim

σ→c
ϕR=3(σ) = ϕR=3(c) ∀σ ∈

Ω1 ∧ lim
σ→c

ϕR=6(σ) = ϕR=6(c) ∀σ ∈ Ω2 ∪ Ω3. Therefore, ϕL=3(σ) is continu-

ous on Ω1 ∪ Ω2, ϕL=6(σ) is continuous on Ω3, ϕR=3(σ) is continuous on Ω1 and

ϕL=6(σ) is continuous on Ω2 ∪ Ω3.

Chapter 5. Fuzzy Mapping-Based Control 71

Besides, by using Lemma 5.3.2, lim
σ→c

ϕL=3(σ) = lim
σ→c

ϕL=6(σ) = 0 ∀c = [c1, c2] |
c2 = ω23(c1) ∧ lim

σ→c
ϕR=3(σ) = lim

σ→c
ϕR=6(σ) = 0 ∀c = [c1, c2] | c2 = ω12(c1). Thus,

also the continuity on the border ω23 for ϕL(σ) and on the border ω12 for ϕR(σ)

is proven. Therefore, ϕL(σ) and ϕR(σ) are continuous in the region [−1, 1]2, i.e.,

ϕL ∈ C0([−1, 1]2) ∧ ϕR ∈ C0([−1, 1]2).

Lastly, the Theorem of Continuous Functions states that “the sum of a finite

number of continuous functions is a continuous function”. From (5.12), ϕIT2
1 (σ),

ϕIT2
2 (σ) and ϕIT2

3 (σ) are sums of continuous functions ϕL=3(σ), ϕL=6(σ), ϕR=3(σ)

and ϕR=6(σ). Then, also ϕIT2
1 (σ), ϕIT2

2 (σ) and ϕIT2
3 (σ) are all continuous in the

region [−1, 1]2, i.e., ϕIT2
1 ∈ C0([−1, 1]2) ∧ ϕIT2

2 ∈ C0([−1, 1]2) ∧ ϕIT2
3 ∈ C0([−1, 1]2).

From (5.12), ϕIT2(σ) is a combination of continuous functions ϕIT2
1 (σ), ϕIT2

2 (σ) and

ϕIT2
3 (σ). Therefore, ϕIT2(σ) is also a continuous function in the region [−1, 1]2.

Corollary 5.3.3.1. If the control inputs to the double-input interval type-2 fuzzy

PD (DI-IT2-FPD) controller are continuous, then the control output from the

DI-IT2-FPD controller is also continuous.

Theorem 5.3.4 (Monotonicity of interval type-2 FM). If ϕIT2(σ) indicates FM of

DI-IT2-FLS, then ϕIT2(σ) is a monotonic increasing function in the region [−1, 1]2

w.r.t. its input variables σ, i.e., ∂ϕIT2

∂σ1
≥ 0 ∧ ∂ϕIT2

∂σ2
≥ 0 ∀σ ∈ [−1, 1]2 ∀α ∈ [0, 1].

Proof. Firstly, let’s show that ϕ(σ) is an increasing function w.r.t. σ1 ∀σ ∈ [−1, 1]2.

From 5.14,
∂ϕIT2

1

∂σ1
= α(σ2+1)

(σ1+σ2+σ1σ2−ασ1−ασ2−ασ1σ2+1)2
∧ ∂ϕIT2

2

∂σ1
=

α(ασ22−σ22+1)
2(σ1+α+σ1σ2−ασ1−ασ1σ2)2

+

α(α−2σ2−σ22+2ασ2+ασ22)
2(α−σ2+σ1σ2+ασ2−ασ1σ2)2

∧ ∂ϕIT2
3

∂σ1
= α(1−σ2)

(σ1σ2−σ2−σ1+ασ1+ασ2−ασ1σ2+1)2
. Consequently,

∂ϕIT2
1

∂σ1
≥ 0 ∀σ1 ∈ [0, 1] ∀σ2 ∈ [0, 1] ∀α ∈ [0, 1] and

∂ϕIT2
2

∂σ1
≥ 0 (∀σ1 ∈

[−1, 0] ∀σ2 ∈ [0, 1] ∨ ∀σ1 ∈ [0, 1] ∀σ2 ∈ [−1, 0]) ∧ ∀α ∈ [0, 1], which is its

definition domain, and
∂ϕIT2

3

∂σ1
≥ 0 ∀σ1 ∈ [0, 1] ∀σ2 ∈ [0, 1] ∀α ∈ [0, 1]. Therefore,

ϕT2 is a monotonic increasing in the region [−1, 1]2 w.r.t. σ1. From the first result

in Theorem 5.3.1, if ϕT2 is a monotonic increasing in the region [−1, 1]2 w.r.t. σ1,

then ϕT2 is a monotonic increasing in the same region also w.r.t. σ2. Therefore,

ϕT2 is a monotonic increasing in the region [−1, 1]2 w.r.t. both σ1 and σ2.

72 5.4. Simulation Results

5.4 Simulation Results

For the dynamical simulations, the Y6 coaxial hexacopter is implemented in ROS

environment and Gazebo simulator which provides a seamless connection for the

developed algorithms between the simulation and real-world applications. Various

FOU parameters settings (PSs) are investigated to validate the theoretical analysis.

The following PSs are selected: PS-1: α = 0.09, PS-2: α = 0.25, and PS-3:

α = 0.81. For PS-1, it is expected that the resulting DI-IT2-FPD controller will

have a fast response time. However, the control system might not be robust against

nonlinearities and uncertainties. For PS-2, it is expected that the resulting DI-IT2-

FPD controller controller will increase the damping when the error is small which

will enhance the system response. On the other hand, the controller should decrease

the damping when the error is relatively large. For PS-3, it is expected that the

resulting DI-IT2-FPD controller will be potentially more robust against parameter

variations and disturbances. However, the controller might have a slower response

time.

5.4.1 Trajectory

In the simulation scenario, a square-wave 3D trajectory is chosen to test the stability

and robustness of each controller with different PSs. The navigation of the UAV

combines long and short straight lines path as well as hovering:
x∗k =

⌊
k
2

⌋
y∗k = 10

⌊
(k−1) mod 4

2

⌋
z∗k = 1,

(5.21)

where k ∈ N+ and b?c is the largest integer not greater than value ?. First, UAV

hovers at [0, 0, 1]m. After that, UAV flies to the next way-point at [1, 0, 1]m and

hovers for 10s before flying to the next way-point. This type of trajectory is often

used in autonomous UAV mapping and exploration scenarios.

Chapter 5. Fuzzy Mapping-Based Control 73

5.4.2 Discussion

The 3D trajectory tracking of DI-IT2-FPD controllers with PS-1, PS-2 and PS-3 is

shown in Fig. 5.7a; while the Euclidean error is shown in Fig. 5.7b. The position

responses projected on x, y and z axes are shown in Figs. 5.7c–5.7e. As can be

seen from Fig. 5.7, the controller with PS-1 has an oscillatory behaviour, while the

controller with PS-3 is relatively slow in converging to the desired value. On the

other hand, the controller with PS-2 combines the characteristics of both controllers

with PS-1 and PS-3; it is fast with smaller overshoot and no oscillations. The

response properties are also given in Table 5.1. As can be seen from Table 5.1, DI-

IT2-FPD with PS-1 has shorter rising time but longer settling time and overshoot,

while DI-IT2-FPD with PS-3 has smaller overshoot but longer rise time. What is

more, DI-IT2-FPD with PS-2 results in the lowest mean squared error value and

settling time.

0.5

4
10

3

x [m]y [m]

25

1
0

0

1

z
[m

] 1.5

desired
PS-1
PS-2
PS-3

(a) 3D trajectory tracking.

0 10 20 30 40 50 60
0

2

4

6

8

10

12

38 40 42
0

2

(b) Euclidean error.

0 10 20 30 40 50 60

t [s]

-1

0

1

2

3

4

x
[m

]

desired
PS-1
PS-2
PS-3

24 26 28
1

1.5

2

(c) x-axis tracking.

0 10 20 30 40 50 60

t [s]

-2

0

2

4

6

8

10

12

y
[m

]

desired
PS-1
PS-2
PS-3

14 16 18
8

10

(d) y-axis tracking.

0 10 20 30 40 50 60

t [s]

0.5

1

1.5

z
[m

]

desired
PS-1
PS-2
PS-3

16 18 20

0.8

0.9

1

(e) z-axis tracking.

Figure 5.7: Trajectory tracking of DI-IT2-FPD position controllers with different
PSs.

74 5.5. Experimental Results

Table 5.1: Properties of different controllers.

DI-IT2-FPD controller PS-1 PS-2 PS-3

Mean squared error, [m] 0.777 0.748 0.821

Overshoot, [m] 0.405 0.069 0.031

Rise time, [s] 0.80 1.18 3.32

Settling time (5%), [s] - 1.71 2.53

On the other hand, from the analysis in Fig. 5.5, PSs with small value of α, e.g.,

PS-1, should result in a more aggressive behaviour. Moreover, PSs with high

value of α, e.g., PS-3, should result in a smoother behaviour. Furthermore, PSs

with intermediate value of α, e.g., PS-2, should result in a moderate behaviour.

Therefore, it can be concluded that the simulation results match with the theoretical

expectations.

5.5 Experimental Results

The experimental flight tests are conducted in the motion capture system, which

provides in real-time the quadcopter’s position: x, y and z coordinates. The

OptiTrack cameras are able to recognise a particular object according to the pattern

of the reflective markers fixed on the object. The cameras provide the estimated

position at a rate of 100Hz. Next, the control signal is computed by the ground

station (CPU: 2.6GHz, 64bit, quad-core; GPU: 4GB; RAM: 16GB DDR4) and sent

to the quadrotor at a rate of 100Hz.

5.5.1 Trajectory

In the experimental scenario, a slanted square-shaped 3D trajectory with 2m square’s

side, shown in Fig. 5.8a, is chosen to test different controllers. This trajectory is

designed to combine several manoeuvres which include hovering, straight line path,

climbing and descending motion. The trajectory includes four way-points, located

at {[1.0,−1.0, 1.2], [−1.0,−1.0, 0.8], [−1.0, 1.0, 0.8], [1.0, 1.0, 1.2]}m. Initially, UAV

hovers at [1,−1, 1.2]m. Then, it starts flying towards the next way-point located at

[−1.0,−1.0, 0.8]m where it hovers for 10s before moving to the next way-point.

Chapter 5. Fuzzy Mapping-Based Control 75

Remark 5.6. In the considered case study, the maximum position error is 2m,

therefore, the proportional input scaling factor is kp = 1
2
; while the maximum speed

error is 2m/s, so the derivative input scaling factor is kd = 1
2
. In addition, the

denormalization gain is tuned by trial-and-error method and set to ko = 3.

5.5.2 Discussion

The results of 3D trajectory tracking of the designed DI-T1-FPD controller and

DI-IT2-FPD controllers with PS-1, PS-2, PS-3, PS-4 and PS-5 are plotted in

Fig. 5.8a; while the Euclidean error is shown in Fig. 5.8b. The position responses

projected on x, y and z axes are shown in Figs. 5.8c–5.8e. These figures show that

DI-IT2-FPD with low α (PS-1) has a high overshoot with an oscillatory action,

while DI-IT2-FPD with high α (PS-5) has no overshooting with relatively slow

convergence to the desired value. At the same time, DI-IT2-FPDs with intermediate

α (PS-2 and PS-3) combine the aspects of both smooth and aggressive controllers.

They are fast in converging with low overshoots and small oscillations.

(a) 3D trajectory tracking. (b) Euclidean error.

(c) x-axis tracking. (d) y-axis tracking. (e) z-axis tracking.

Figure 5.8: Trajectory tracking of different DI-IT2-FPD controllers in absence of
wind.

76 5.5. Experimental Results

Repeating the experiments ten times for each controller, Table 5.2 shows the

calculated Euclidean MAE, MVCS for x and y axes, mean overshoot, mean rise

time and mean settling time at 5% of the desired value. The MVCS is computed as

MVCS =
1

ND − 1

ND−1∑
i=1

|θ∗i+1 − θ∗i |+ |φ∗i+1 − φ∗i |
2

, (5.22)

where ND is the number of data samples, and θ∗i and φ∗i are commanded pitch

and roll angles of UAV for the i-th sample, respectively. As can be observed

from Table 5.2, DI-IT2-FPD controller with PS-3 has the lowest MAE value since

it benefits of the best combination of aggressiveness, when UAV is far from the

desired position, and smoothness, when UAV is close to the desired position. At

the same time, DI-IT2-FPD controller with PS-5 has the lowest MVCS value and

smallest overshoot since it generates smooth control commands. On the other hand,

DI-IT2-FPD controller with PS-1 has higher overshoot but the smallest rise time.

The settling time at 5% of the final value is the lowest for DI-IT2-FPD controller

with PS-4 which undershoots the desired position and is fast to stabilize UAV.

To check the robustness of the designed controllers, wind disturbances have been

introduced. The maximum wind gust is around 5m/s. Table 5.3 shows the average

properties of DI-IT2-FPD controllers after ten experiments for each case. As can be

observed, in the presence of wind the Euclidean MAE increases for all the controllers.

However, DI-IT2-FPD controller with PS-3 has a good capability to capture the

wind disturbance, and it results again in the lowest MAE value. The intensity of

the control signal again is higher for more aggressive controllers. At the same time,

DI-IT2-FPD controller with PS-4 has the smallest overshoot because this controller,

similarly to DI-IT2-FPD controller with PS-3, has a good capability to capture the

wind disturbance. The rise time increases for more aggressive controllers because

the headwind hampers fast flight and the tailwind does not help to fly faster. While

Table 5.2: Properties of DI-IT2-FPD controllers in absence of wind.

DI-IT2-FPD controller PS-1 PS-2 PS-3 PS-4 PS-5

MAE, [m] 0.299 0.241 0.228 0.240 0.259

MVCS, [◦] 0.314 0.077 0.072 0.041 0.030

Overshoot, [m] 0.515 0.230 0.115 0.023 0.001

Rise time, [s] 1.58 1.60 1.78 3.25 4.63

Settling time, [s] 4.70 2.58 2.13 2.08 3.00

Chapter 5. Fuzzy Mapping-Based Control 77

Table 5.3: Properties of DI-IT2-FPD controllers in presence of wind.

DI-IT2-FPD controller PS-1 PS-2 PS-3 PS-4 PS-5

MAE, [m] 0.305 0.259 0.238 0.250 0.282

MVCS, [◦] 0.379 0.105 0.090 0.068 0.061

Overshoot, [m] 0.500 0.268 0.120 0.018 0.028

Rise time, [s] 1.60 1.68 1.70 2.98 4.20

Settling time, [s] 4.88 2.83 2.10 2.00 2.78

the rise time decreases for smoother controllers because the headwind does not

reduce the flight speed and the tailwind help to fly faster. For a similar reason, the

settling time is larger for aggressive controllers and smaller for smooth controllers.

In addition, DI-T1-FPD and DI-IT2-FPD with PS-3 controllers are compared

with the conventional PD controller. The results of 3D trajectory tracking of PD,

designed DI-T1-FPD and DI-IT2-FPD with PS-3 position controllers are shown in

Fig. 5.9a. The Euclidean error is shown in Fig. 5.9b for different controllers. The

position (x, y and z) responses are shown in Figs. 5.9c–5.9e.

(a) 3D trajectory tracking. (b) Euclidean error.

(c) x-axis tracking. (d) y-axis tracking. (e) z-axis tracking.

Figure 5.9: Trajectory tracking of three different position controllers in presence
of wind.

78 5.5. Experimental Results

For the statistical analysis of control performances, the experiments are repeated

ten times for each controller. To compare the trajectory tracking performances,

a box-plot is presented in Figs. 5.10. It is possible to observe that on average

DI-IT2-FPD controller with PS-3 has the lowest MAE and standard deviation on

the tested trajectory when compared to other controllers.

Table 5.4 compares the characteristics of five controllers: standard PD, DI-T1-FPD

which uses the standard type-1 fuzzy logic process, DI-T1-FPD* which uses directly

FM in (5.8), DI-IT2-FPD which uses the standard interval type-2 fuzzy logic process

and DI-IT2-FPD* which uses directly FM in (5.12). The average computation time

for the traditional DI-T1-FPD and DI-IT2-FPD controllers is larger when compared

to that of PD. Since in conventional FLCs, first, the input is fuzzified, then, it goes

through the inference engine and, in the end, it is defuzzified. Moreover, in IT2-FLC,

the FSs have to be reduced from type-2 to type-1 before the defuzzification. However,

in DI-T1-FPD* and DI-IT2-FPD*, a direct FM is used which drastically reduces

the computation time. The design, implementation and tuning of PD controllers are

easy since it has only two parameters (kp and kd). On the other hand, DI-T1-FPD

controller has three parameters (kp, kd and ko) and DI-IT2-FPD controller has four

parameters (kp, kd, ko and α). Finally, DI-IT2-FPD controller with PS-3 results in

the lowest MAE value computed from ten experiments.

Figure 5.10: Box-plot of the tracking performances of six different controllers in
presence of wind.

Chapter 5. Fuzzy Mapping-Based Control 79

Table 5.4: Characteristics of different types of controllers.

Controller
Computation time

(average), [ms]
Number of
parameters

MAE with
wind [m]

PD 0.008 2 0.314

DI-T1-FPD 1.356
3 0.282

DI-T1-FPD* 0.015

DI-IT2-FPD 1.759
4 0.238

DI-IT2-FPD* 0.017

From the experimental tests, it can be observed the following:

� For low values of α, DI-IT2-FPD controllers generate more aggressive control

inputs. Consequently, in a real physical system, it results in higher overshoot

but lower rising time. If the system is underdamped, it might result in

oscillatory behaviour which increases the settling time.

� For high values of α, DI-IT2-FPD controllers generate smoother control inputs.

Consequently, in a real physical system, it results in undershoot and higher

rising time but no oscillations occur. Nevertheless, since the control action

is not strong, in disturbed systems, the response will be strongly affected by

these disturbances causing more overshoot/undershoot.

� For moderate values of α, DI-IT2-FPD controllers combines the characteristics

of two cases above.

To summarize, the behaviour of DI-IT2-FPD controllers with small values of α, i.e.,

0 < α � 1, is more aggressive around the desired position; while, the behaviour

of DI-IT2-FPD controllers with big values of α, i.e., 0� α ≤ 1, is less aggressive

around the desired position. These observations fully confirm the theoretical analysis

in Subsection 5.3.2. Therefore, α can be called the aggressiveness parameter. Lastly,

there is no universally good value of α which can satisfy all the cases. The optimal

value of α depends on the specific application, controlled system and working

environment.

80 5.6. Conclusion

5.6 Conclusion

In this chapter, the main focus is to design, deploy and analyse DI-T1-FLC and

DI-IT2-FLC with various PSs. First of all, an alternative systematic approach to

explicitly derive the mathematical input-output relationships of DI-T1-FLC and

DI-IT2-FLC has been presented. These nonlinear closed-form relationships allowed

to verify some important characteristics of both DI-T1-FLC and DI-IT2-FLC, like

symmetry, continuity and monotonicity. Then, the design method for DI-IT2-FLC

has been presented where only one parameter of FOU has to be selected, i.e., aggres-

siveness parameter α. By only modifying this parameter, DI-IT2-FLC controllers

can be designed in an easy manner to have more aggressive or smoother behaviour.

Besides, the developed controllers are computationally faster than the traditional

FLCs. To prove these theoretical claims, different DI-IT2-FPD controllers with

various PSs have been implemented in ROS. Then, the developed controllers have

been tested, in simulation and experimental case studies, for the way-points tracking

control of a quadcopter aircraft. Finally, it has been shown that the theoretical

claims and expectations match the results in the case studies.

Part III

Neural Network-Based Control

81

Chapter 6

Artificial Neural Network-Based

Control

By definition, ANNs are computing models which progressively improve their

performance by learning from training examples [13]. Similarly to biological neural

networks, ANNs are built by many simple processing elements, called neurons,

which are interconnected by links, called synapses [14]. Hence, ANN learns from

the training samples by adjusting the synaptic weights of the connections between

neurons [15]. Moreover, ANNs reduce the need for feature engineering, which

is one of the most time-consuming tasks in machine learning, for the training

data [16]. Therefore, ANNs are ideal for situations that require approximating a

function that depends on a huge number of inputs, which nonlinearly connects to

the output [17]. Given the ability of ANNs to generalise knowledge from training

samples, an ANN-based controller is suitable to control nonlinear systems [18].

In this chapter, potentials of ANNs are explored under various operational conditions.

First, Section 6.1 revises the definition of ANN. Then, Sections 6.3 and 6.4 show

simulation and experimental results for fast and agile flight with a motor failure

case for a hexacopter UAV. Finally, the conclusions are drawn in Section 6.5.

Supplementary Material:

ROS package for the proposed ANN controllers: github.com/andriyukr/controllers.

Video for the experimental results: tiny.cc/fast ANN.

Video for the experimental results: tiny.cc/failure ANN.

83

https://github.com/andriyukr/controllers
http://tiny.cc/fast_ANN
http://tiny.cc/failure_ANN

84 6.1. Mathematical Preliminaries

6.1 Mathematical Preliminaries

In a general single-hidden-layer ANN, the neurons are organised in input layer with

(NI + 1) neurons, hidden layer with (NH + 1) neurons, and output layer with NO

neurons. First, the input I = {I1, . . . , INI
, 1} is fed into the hidden layer of ANN

through the network weights W1 =


w1,1,1 · · · w1,1,NH

...
. . .

...

w1,NI+1,1 · · · w1,NI+1,NH

 ∈ R(NI+1)×NH .

Then, the output O = {O1, . . . ,ONO
} is computed by applying the network weights

W2 =


w2,1,1 · · · w2,1,NO

...
. . .

...

w2,NH+1,1 · · · w2,NH+1,NO

 ∈ R(NH+1)×NO to the output from the hidden

layer. The weights in ANN are updated following a set of rules during the learning

process.

Assumption 5. The network weights W1 and W2 are bounded, i.e.:‖W1(t)‖∞ ≤ cW1

‖W2(t)‖∞ ≤ cW2

∀t, (6.1)

where cW1 and cW2 are some positive constants.

In the proposed approach, the input is I = {e, ė}, i.e., the position feedback error

and its time derivative; while the output is O = {uANN}, i.e., the control signal,

as shown in Fig 6.1. Therefore, there are three input neurons (NI = 3) and one

output neuron (NO = 1). The number of neurons in the hidden layer defines the

learning capabilities of ANN. The neural networks with a single hidden layer are

universal approximators [126], i.e., with a sufficient number of neurons, the network

can learn any measurable function [127]. Typically, a smaller number of neurons

may result in better generalisation in terms of different situations observed during

tests; while a large number of neurons provides better convergency [128]. Therefore,

an optimal number of neurons should be selected.

Chapter 6. Artificial Neural Network-Based Control 85

I1

I2

Input
layer

H1

HNH

1

...

Hidden
layer

O1

Output
layer

e

ė

W1

W2

uANN

Figure 6.1: Structure of the proposed artificial neural network organised in input
layer with two neurons, hidden layers with NH + 1 neurons, and output layer
with one neuron.

Assumption 6. The two input signals e(t) and ė(t), and their respective time

derivatives ė(t) and ë(t) are bounded [129], i.e.:
|e(t)| ≤ ce

|ė(t)| ≤ cė

|ë(t)| ≤ cë

∀t, (6.2)

where ce, cė and cë are some positive constants.

The control signal from ANN is computed as a linear combination of each input:

uANN =

∑NH

j=1Hjw2,j,1∑NH

j=1Hj

=

NH∑
j=1

H̄jw2,j,1, (6.3)

where H̄j is the normalized output from the jth neuron in the hidden layer:

H̄j =
Hj∑NH

h=1Hh

, (6.4)

and

Hj = φ

(
NI∑
i=1

Iiw1,i,j

)
, (6.5)

86 6.1. Mathematical Preliminaries

where j ∈ {1, . . . , NH} and φ is the scalar activation function. From Assumption 5

and (6.3), it is evident that uANN(t) and u̇ANN(t) are also bounded signals [130]:|uANN(t)| ≤ cu

|u̇ANN(t)| ≤ cu̇
∀t, (6.6)

where cu and cu̇ are some positive constants [131].

In the proposed control scheme, ANN works in parallel with a conventional PD

controller, as shown in Fig. 6.2. The PD controller ensures the stability of the

system in the initial phase of the learning process and acts as a feedback part of the

controller providing sufficient time for ANN to initialize its learning process [93].

Thus, ANN will learn the control parameters and take over the control of the system.

With its adaptive learning rates, ANN is very fast to learn and can instantaneously

contribute to better performance, i.e., trajectory tracking accuracy.

Remark 6.1. One may note from Fig. 6.2 that the control output u is one-

dimensional. The same control structure is used to generate all the four control

signals described in (2.37), but only one is shown here for the sake of simplicity and

to avoid repetition.

The overall control input u to the controlled system is defined by:

u = uPD − uANN, (6.7)

where uPD and uANN are the control signals generated by PD and ANN controllers,

respectively. The general PD control law is described as follows:

uPD = kpe+ kdė, (6.8)

where kp and kd are proportional and derivative gains, respectively.

d
dt

ANN

PD

e ė

uANN

−

uPD

+

u

Figure 6.2: Control scheme: ANN in parallel with PD controller.

Chapter 6. Artificial Neural Network-Based Control 87

6.2 Sliding Mode Control-Based Learning

For the learning process of ANN, an SMC-based parameter adaptation scheme

is used. The SMC framework is designed by selecting a suitable sliding manifold

that will ensure the desired system dynamics. Moreover, to fulfil the sliding mode

constraints/conditions, a dynamic feedback adaptation mechanism or, in other

words, an online learning algorithm for ANN parameters has to be designed.

The difference between the measured output of the system and the output of the

ANN can be defined as a time-varying sliding surface [132]. A time-varying sliding

surface S can describe the zero value of the learning error coordinate uPD(t) by

using the theory of SMC [133]:

S(t) = uPD(t) = uANN(t) + u(t) = 0. (6.9)

Using the condition in (6.9), ANN is trained to obtain the desired response such

that it becomes a nonlinear regulator that assists the conventional PD controller.

Thus, the sliding surface for the nonlinear system under control is [134]:

S(e) =

(
d

dt
+ λ

)
e = ė+ λe, (6.10)

where λ > 0 is a constant which determines the slope of the sliding surface. A

sliding motion will occur on the sliding manifold S(t) = uPD(t) = 0 after a finite

time th, if the condition S(t)Ṡ(t) = uPD(t)u̇PD(t) < 0 is satisfied for all t such

that [t, th) ⊂ (−∞, th) in some nontrivial semi-open subinterval of time [135].

Consequently, uANN(t) is constrained to perfectly follow the desired output signal

u(t) for all t > th. The time instant th is the hitting time for the learning error

uPD(t) = 0. For an arbitrary initial condition uPD(0), uPD(t) will eventually converge

to a small neighbourhood of zero during a finite time th. Therefore, the adaptation

laws for the parameters of ANN are given as follows:ẇ2,j,1 = −α Hj∑NH
h=1H

2
h

sign(uPD) ∀j ∈ {1, . . . , NH}

α̇ = γ|uPD| − γνα,
(6.11)

where α > 0 is an adaptive learning rate, γ ≥ 0 and ν ≥ 0 are learning parameter.

The pseudo-code of the ANN training is presented in Algorithm 1.

88 6.2. Sliding Mode Control-Based Learning

Algorithm 1: Online adaptation of ANN.

Input: e, ė, uPD

Output: uANN

Data: NH , α0, γ, ν
Result: ANN controls the system online
begin

ANN ← ConstructNetworkLayers(2, NH , 1)
W1 ← InitializeWeights()
W2 ← InitializeWeights()
α← α0

repeat
Get e, ė and uPD

Hj ← φ
(∑NI

i=1 Iiw1,i,j

)
∀j ∈ {1, . . . , NH}

H̄j ← Hj∑NH
h=1Hh

∀j ∈ {1, . . . , NH}

ẇ2,j,1 ← −α Hj∑NH
h=1H

2
h

sign(uPD) ∀j ∈ {1, . . . , NH}

α̇← γ|uPD| − γνα
uANN ←

∑NH

j=1 H̄jw2,j,1

Send uANN to the system
until Stop

end

Remark 6.2. In the adaptation laws in (6.11), the learning rate α is variable and

its value evolves during the learning process. This adaptation law allows choosing a

small initial value for α which, consequently, grows during the training phase.

Theorem 6.2.1 (Stability of ANN). If the adaptation laws for the parameters are

chosen as in (6.11), then learning error uPD will converge to a small neighbourhood

of zero in a finite time th for any arbitrary initial condition.

Proof. Let’s consider the following Lyapunov function:

V =
1

2
u2

PD +
1

2γ
(α− α∗)2. (6.12)

Hence, V > 0 for (uPD 6= 0)∨ (α−α∗ 6= 0) and V = 0 for (uPD = 0)∧ (α−α∗ = 0).

Taking the time derivative of V :

V̇ = uPDu̇PD +
1

γ
(α− α∗)α̇ = uPD(u̇+ u̇ANN) +

1

γ
(α− α∗)α̇, (6.13)

Chapter 6. Artificial Neural Network-Based Control 89

in which

u̇ANN =

NH∑
j=1

(
˙̄Hjw2,j,1 + H̄jẇ2,j,1

)
. (6.14)

By replacing (6.14) into (6.13):

V̇ = uPD

(
u̇+

NH∑
j=1

˙̄Hjw2,j,1 +

NH∑
j=1

H̄jẇ2,j,1

)
+

1

γ
(α− α∗)α̇. (6.15)

Considering the fact that
∑NH

j=1 H̄j = 1 =⇒
∑NH

j=1
˙̄Hj = 0:

V̇ = uPD

(
u̇+

NH∑
j=1

H̄jẇ2,j,1

)
+

1

γ
(α− α∗)α̇. (6.16)

By considering the adaptation laws of W2 in (6.11):

V̇ = uPD (u̇− αsign(uPD)) +
1

γ
(α− α∗)α̇

= |uPD|Bu̇ − α|uPD|+
1

γ
(α− α∗)α̇

= |uPD|Bu̇ − (α− α∗)|uPD| − α∗|uPD|+
1

γ
(α− α∗)α̇.

(6.17)

By considering the adaptation laws of α in (6.11):

V̇ = |uPD|Bu̇ − α∗|uPD| − ν
(
α− 1

2
α∗
)2

+
1

4
να∗2. (6.18)

Assuming Bu̇ ≤ 1
2
α∗, the following inequality is obtained:

V̇ ≤ −1

2
α∗|uPD|+

1

4
να∗2, (6.19)

which implies that the Lyapunov function decreases until uPD < 1
4
να∗ and uPD

remains bounded. Furthermore, ν is a design parameter and it is possible to select

this value as small as desired.

90 6.3. Simulation Results

6.3 Simulation Results

At first, the controller is tested in simulation to determine the ANN’s meta-

parameters, like learning rate and number of neurons in the hidden layer. The

Gazebo simulation environment is used to simulate and model the flying UAV,

including a motor failure, because of its powerful and robust physics engine. A

thorough analysis of the different number of neurons in the hidden layer is done to

observe its effects on computation times and learning performance. The compu-

tation time is calculated for the different number of neurons, in a simple circular

trajectory of 5m radius at reference speed of 1m/s, as shown in Table 6.1. Note

that the time given in the table is the average computation time taken to run one

loop of the ANN controller. It is evident from the study that no significant change

is observed in terms of tracking improvement with the increase in the number of

neurons, albeit the computation time multiplies.

As aforementioned, ANN begins to learn online from a pre-set learning rate, each

time it is initialized and applies a correction to the model-based techniques. This

allows keeping the original benefits of the control, including stability properties,

while the proposed algorithm adds effort to improve performance metrics. Thus,

any particular data set for a scenario is not fed to the controller to learn any specific

trajectory, rather the controller is designed to perform better in every arbitrary

condition. The main goal for the ANN-assisted controller is to learn in a very

short time and perform better than the commonly used conventional controllers.

Moreover, implementing a simple neural network with just a single hidden layer

with few neurons is not sufficient to learn the complex system dynamics of UAV.

Table 6.1: Comparison of computation times and mean Euclidean error for
different number of neurons in hidden layer.

Number of neurons 3 9 20 50 100 500

Computation time, [ms] 0.092 0.127 0.143 0.245 0.427 2.57

Mean Euclidean error, [ms] 1.55 1.52 1.56 1.55 1.58 1.69

Chapter 6. Artificial Neural Network-Based Control 91

6.4 Experimental Results

To validate the performance of the proposed controller, comprehensive real-time

tests are conducted on a custom-made coaxial hexacopter, depicted in Fig. 2.1b.

An additional motor failure relay is added to UAV, which helps to trigger the

motor failure on-demand from the radio transmitter. The tests are performed in an

outdoor environment with the use of the real-time kinematic (RTK)-GPS, which

provides the x, y and z position information with an accuracy of approximately

5 − 20cm at 5Hz. It is to be noted that the experiments were conducted with

average wind gusts of 5m/s.

The onboard computer running all the codes in C++ on ROS is a low-cost and

low-power Odroid XU4 – thus, allowing the system to be autonomous. The main

constraint being the computation power available on the onboard computer, desirable

three sets of neurons are selected from hardware-in-the-loop simulation to ensure

that sensible computation is utilised in real-time. The position information from

RTK-GPS together with the data from the inertial measurement unit is fed into

the local position estimator which estimates the pose of UAV. This information is

used by the controller to compute the control signal and provide it to UAV through

a 5GHz wireless network.

The goal is to achieve a great performance using the proposed controller in chal-

lenging and previously unknown trajectories, for which a perfectly tuned set of

PID gains can not be determined. The ANN-assisted conservative PD controller

is employed to perform trajectory tracking. The advantage is that since the ANN

starts learning online each time from scratch when initialized, it converges faster

and better when compared to other controllers as shown in the results. The results

of the ANN controller are compared with two widely used position controllers. One

is the position controller of the Pixhawk autopilot stack [136, 137], referred as

PIDFCU; while the other is a standard PID position controller, referred as PIDpos,

which sends attitude-setpoints – roll, pitch, and yaw angles – and thrust commands.

The same experimental scenario is repeated with a different controller each time.

Note that all the iterations with different controllers were carried out in similar

outdoor conditions.

92 6.4. Experimental Results

6.4.1 Fast and Agile Flight

A trajectory with two segments – zig-zag and straight line – is chosen to make UAV

experience both agile and fast manoeuvres at high speeds. In the first segment

of the trajectory, UAV follows a zig-zag path for 55m along x-axis and a periodic

change of ±5m along y-axis at a target speed of 5m/s. Then, in the second segment,

UAV follows a straight-line path at the target speed of 15m/s for another 70m.

Table 6.2 gives a brief overview of the experiments carried out for the different

controllers numerous times on various trajectories. In particular, a zig-zag path at

high speed and a simple circular trajectory at nominal speed are traced. The zig-zag

path is a pattern stretching 30m along x-axis and ±5m along y-axis, while the

latter is a circle of 2m radius circling three times. The experiments are performed

for each of the three controllers in discussion and are repeated twice for the sake of

repeatability. An overall improvement of the proposed ANN-based controller can

be observed and that its performance is independent on the chosen trajectory.

The results plotted in Fig. 6.3 show the trajectory tracking of the UAV in 3D space

over time. The wind gusts and the high speeds of the UAV exert huge stresses

on the rotors, thus slight deviations from the trajectory are inevitable. The slight

deviation along z-axis towards the end of the trajectoryis because of the tilting

thrust vector of the UAV, reducing the vertical component of thrust compared to

the weight of the UAV. As seen from the top view of the trajectory in Fig. 6.4, the

maximum deviation from the trajectory in case of ANN is about 1m and 5m in any

direction for the zig-zag and straight-line parts, respectively. However, for PIDFCU

and PIDpos it is about 2.5m and 2m for zig-zag and 13m and 9m for straight-line

parts, respectively. Moreover, even at high speeds and very sharp turns, ANN

tracks the trajectory to the closest point on the bends.

Table 6.2: Statistical comparison of three controllers.

Trajectory Controller Mean Euc. error, [m] MAE, [m] σ

Zig-zag
PIDFCU 1.331 5.378 2.178
PIDpos 1.022 4.942 1.834
ANN-PD 0.861 4.550 1.721

Circle
PIDFCU 1.147 1.776 0.396
PIDpos 1.042 1.617 0.542
ANN-PD 0.511 0.757 0.299

Chapter 6. Artificial Neural Network-Based Control 93

Figure 6.3: Real-time trajectory tracking of the UAV.

Figure 6.4: Top view and tracking error of the considered controllers.

A common parameter usually calculated as a performance comparison metric is the

Euclidean error in (3.12). Specifically in the trajectory tracking problem, using the

94 6.4. Experimental Results

Euclidean error alone can penalize the algorithm because the delay in following

the trajectory is taken into account and not how accurately it is following the

command [138]. Thus, the overall tracking error in x, y, and z axes, plotted

in Fig. 6.4, shows how closely or accurately the actual path is followed despite

such tight constraints. The improvement achieved by ANN in terms of tracking

error is 63% and 60% compared to PIDFCU and PIDpos, respectively. Even on the

straight-line segment of the trajectory, it converges to the actual trajectory despite

the initial deviation. Considering the high speeds and attitude angles attained

during the entire 155m long trajectory, the error for ANN is significantly smaller.

At the end of the straight path, when UAV is travelling close to 18m/s, it has to

come to a halt, which physically it is not possible to stop in an instant – thus,

the overshoot at the end and then UAV converges to hover states. The ground

speed achieved for the different controllers is compared in Fig. 6.5. As shown in

the acceleration plot in Fig. 6.5, ANN is the fastest to accelerate and complete

the trajectory. The ANN-assisted controller is able to maintain stable flight while

reaching peak velocities of 18m/s and attitude angles of 45◦ during the trajectory.

Highest average speeds are observed for ANN during the zig-zag path as ANN

follows the trajectory to minimize the tracking error. The control output signals of

Figure 6.5: Ground speed and acceleration of the considered controllers.

Chapter 6. Artificial Neural Network-Based Control 95

Figure 6.6: Control signals of ANN for x, y and z axes.

the ANN controller working in parallel with PD controller are presented in Fig. 6.6

for the x, y and z axes.

To summarise, it is shown that ANN accelerates faster to follow the desired trajectory

and results in the best trajectory tracking among the three considered controllers.

The learning capability of ANN helps to minimize the tracking error over time and

provide superior performance. The mean absolute tracking error for each of the

three controllers along with the maximum speed and acceleration attained are given

in Table 6.3.

Table 6.3: MAE, maximum speed and maximum acceleration achieved for the
considered controllers.

Controller MAE, [m] Max. speed, [m/s] Max. acceleration, [m/s2]

PIDFCU 3.749 17.8 5.222

PIDpos 3.429 20.0 5.373

ANN-PD 1.356 18.3 8.065

96 6.4. Experimental Results

6.4.2 Motor Failure

Safe operation of UAVs has a high priority as most of them operate in human

populated areas [139]. A long straight manoeuvre is chosen to track the motion

at high-speeds reaching 20m/s for the fast flight of UAV. Then, UAV starts the

mapping trajectory with 3m× 5m dimensions, after reaching the destination area,

at a speed of 2m/s. During this part of the trajectory, UAV experiences a motor

failure and, yet, continues to complete the trajectory and land safely at the end.

The plot in Fig. 6.7 shows the trajectory tracking of the UAV in 3-dimensional space

over time. The plots are shaded in two colours, the initial green phase shows the

motors are running properly and the red phase starting at 21s mark shows the flight

with motor failure. The motor failure is triggered when the UAV is following the

mapping part of the trajectory. A slight change in z axis seen from the plot is the

initial drop in height due to the instantaneous loss of thrust. The ANN controller

learns it as a disturbance and compensates for the loss. The integral term of the

PID controller also tries to minimize the steady-state error but ANN-PD is more

effective. The UAV lands at the end with the motor failure state and a huge lag in

the PIDFCU’s capability to land can be seen. On the other hand, the ANN-based

controller and PIDpos are more effective at landing compared to the former. It is

to be noted that the landing height is not exactly 0m, but slightly below that, as

Figure 6.7: Position tracking performance of various controllers

Chapter 6. Artificial Neural Network-Based Control 97

the field where the experiments are carried out is not an even surface – thus, the

landing point is below the datum of the take-off point.

The high speeds, experiencing motor failure, and the wind gusts exert tremendous

stresses on the rotors and the UAV inertial dynamics, and thus small deviations from

the trajectory are inevitable. The overview of the trajectory as seen from the top is

depicted in Fig. 6.8. It can be noted that the PIDpos has more deviations from the

actual path and the ANN controller follows the sharp bends more effectively, thus

minimizing the overall error. In the trajectory tracking problem, the Euclidean error

is usually calculated to determine the controller’s performance, but it may penalize

the algorithm as it takes into account the time delay in following the trajectory and

not how accurately it is following [140]. Thus, the overall tracking error in the x,

y, and z axes showing the UAV’s capability of following the actual path is shown

in Fig. 6.9. The ANN controller is able to achieve an overall improvement of 41%

and 55% when compared to the PIDFCU and PIDpos, respectively, for the entire

stretch of trajectory. Keeping in mind the high speeds and the high attitude angles

achieved during the trajectory, the error for ANN is quite small.

The ground speed of the UAV, during the trajectory, for the various considered

controllers is shown in Fig. 6.10. The ANN accelerates faster and thus tracks the

trajectory better than the other two controllers. The acceleration plot is also shown

in Fig. 6.10. The UAV follows the mapping part of the trajectory at a speed of

2m/s with a motor failure. The ANN controller working in parallel with a PD

controller is able to stabilize the flight during this scenario and still able to follow

the desired path closely. The UAV lands at the end of the trajectory at a defined

location.

The control output of the ANN controller for the x, y, and z axes is shown in

Figure 6.8: Top view comparison of various controllers

98 6.4. Experimental Results

Figure 6.9: Tracking error comparison of various controllers

Figure 6.10: Ground speed and acceleration of different controllers

Fig. 6.11. Note the sudden increase in the control output of z axis as the motor is

failed at the instant of 21s. The performance characteristics of the controllers are

given in Table 6.4.

Chapter 6. Artificial Neural Network-Based Control 99

Figure 6.11: Control output of ANN controller for x, y, and z axes

6.5 Conclusion

In this chapter, an ANN-assisted PD controller is proposed for the UAV’s control

in various challenging conditions. A fast flight manoeuvre at speeds of 18m/s is

performed to show the superior performance of the proposed controller. While

performing a predefined task, the UAV experiences a single motor failure, and the

proposed controller handles the failure ensuring the safety of the mission as well

as the UAV. The model-free nature of the controller helps in accurate trajectory

tracking even for high speed and agile manoeuvres. The advantage of the proposed

controller is that it does not need a well-tuned set of PD gains as it learns online

and improves the performance metrics while following the trajectory. Moreover, the

proposed controller is computationally cheap to be implemented on the onboard

computer. The real-time experiments show that for all the phases of the considered

scenario the proposed controller outperforms the conventional PID controllers.

Table 6.4: MAE, maximum speed and maximum acceleration achieved for the
considered controllers.

Controller MAE, [m] Max. speed, [m/s] Max. acceleration, [m/s2]

PIDFCU 5.564 18.81 5.50

PIDpos 6.653 19.86 9.13

ANN-PD 4.288 19.49 7.76

Chapter 7

Deep Neural Network-Based

Control

Though ANN are able to generalise knowledge from training samples, common

single-hidden-layer ANNs can approximate effectively only simple nonlinear func-

tions, while real-world systems are frequently highly nonlinear [141]. On the other

hand, DNNs which are distinguished from the more commonplace single-hidden-

layer ANNs by their depth that is the number of layers through which data must

pass in a multi-step process [20]. Thus, DNNs can approximate non-linear functions

with an exponentially lower number of training parameters and higher sample com-

plexity when compared to ANNs [22]. Therefore, DNNs propose a novel approach

to enhance the control strategies for nonlinear systems [23]. After training the DNN

module on collected flight samples, it can be used in real-time to provide the control

signal [24].

In this chapter, the potentials of DNNs are explored under various operational

conditions. First, Section 7.1 revises the definition of DNN. Next, Section 7.2 pro-

vides theoretical results related to the transfer learning problem. Then, Sections 7.3

and 7.4 show simulation and experimental results for linear systems and two types

of quadrotor UAVs, respectively. Finally, the conclusions are drawn in Section 7.5.

Supplementary Material:

Video for the experimental results: tiny.cc/DNN.

101

http://tiny.cc/DNN

102 7.1. Mathematical Preliminaries

7.1 Mathematical Preliminaries

In a general DNN, the neurons are organised in input layer with NI neurons,

NL hidden layers with NH,h, h ∈ {1, . . . , NL}, neurons in each layer, and output

layer with NO neurons, as shown in Fig 7.1. First, the input I = {I1, . . . , INI
} is

forwarded to the first hidden layer of the network through the network weights

W1 =


w1,1,1 · · · w1,1,(NH,1−1)

...
. . .

...

w1,NI ,1 · · · w1,NI ,(NH,1−1)

 ∈ RNI×(NH,1−1). Commonly, the hidden layers

of DNN are systematised in a fully connected structure with the network weights

Wh =


wh,1,1 · · · wh,1,(NH,h−1)

...
. . .

...

wh,NH,h−1,1 · · · wh,NH,h−1,(NH,h−1)

 ∈ RNH,h−1×(NH,h−1), h ∈ {2, . . . , NL}.

Finally, the output O = {O1, . . . ,ONO
} is computed by using the network weights

WNL+1 =


wNL+1,1,1 · · · wNL+1,1,NO

...
. . .

...

wNL+1,NH,NL
,1 · · · wNL+1,NH,NL

,NO

 ∈ RNH,NL
×NO to the output from

the last hidden layer. The weights in DNN are updated following a set of rules

during the learning process.

Assumption 7. The network weights Wi, i ∈ {1, . . . , NL + 1}, are bounded, i.e.:

‖Wi(k)‖∞ ≤ cWi
, i ∈ {1, . . . , NL + 1} ∀k, (7.1)

where cWi
, i ∈ {1, . . . , NL + 1}, are some positive constants.

...

Input
layer

I

...
...

Hidden layers

...

Output
layer

O

I1

INI

W1
Wh WNL+1 O1

ONO

Figure 7.1: Structure of DNN organised in input layer with NI neurons, NL

fully-connected hidden layers with NH,h, h ∈ {1, . . . , NL}, neurons in each layer,
and output layer with NO neurons.

Chapter 7. Deep Neural Network-Based Control 103

7.2 Transfer Learning

Due to the cost associated with data collection and training, approaches have been

proposed to transfer knowledge between robots and thereby increase the efficiency

of robot learning. These transferred learning approaches are expected to speed

up the training of the target robot and enhance its performance in untrained

tasks [142]. The knowledge transfer method that allows the DNN module trained

on a source robot system to enhance the impromptu tracking performance of a

target robot system that has different dynamics can be implemented. The source

and target robot systems can be considered as closed-loop systems whose dynamics

are represented by (2.1).

Remark 7.1. Assumptions 1, 2 and 3 are necessary for safe operations and for

applying the DNN inverse learning [102].

Assumption 8. The source and target systems have the same relative degree r.

Remark 7.2. Assumption 8 holds, for instance, if the two robots have similar

structures but different parameters, e.g., mass and dimension.

The DNN module represents the inverse dynamics of a source system and is

previously trained offline with a sufficiently rich dataset. During the testing phase,

the DNN module is leveraged to enhance the tracking performance of a target system

that shares some dynamic similarities with the source system. The online learning

module (trained based on small sets of real-time data) further adjusts the reference

generated by the DNN module to allow the target system to achieve high-accuracy

tracking on arbitrary trajectories from the first attempt, i.e., impromptu tracking.

The proposed control architecture is depicted in Fig. 7.2.

Definition 7.2.1. Let u1 ∈ RNI be the reference from the DNN module trained on

the source system, and u2 ∈ RNI be the reference from the online learning module.

The overall reference to the target baseline system u(k) ∈ RNI is given by

u(k) = u1(k) + u2(k). (7.2)

The online learning approach is considered that adapts the reference of the DNN

module u1(k) based on the tracking error. In particular, the reference u2(k) can be

104 7.2. Transfer Learning

DNN

Online
Learning

Baseline
Controller

System

y∗
u1

+

u2

+

u v y

x

Figure 7.2: Block diagram of the DNN-enhanced control architecture with online
learning module (solid lines represent calculated quantities, dashed lines represent
measured quantities, dotted lines represent estimated quantities).

approximated by

u2(k) = αẽ(k + r), (7.3)

where α is an adaptation gain, and ẽ(k + r) is a prediction of the tracking error r

time steps ahead.

Let consider a nonlinear source system, on which the DNN module is trained,

similarly as in (2.5):

y(k + r) = FS(x(k)) + GS(x(k))u(k), (7.4)

where

FS(x(k)) = hS (f rS(x(k))) (7.5)

and

GS(x(k)) =
∂

∂u(k)

[
hS
(
f r−1
S (fS(x(k)) + gS(x(k))u(k))

)]
(7.6)

are decoupling functions, in which fS : RNS → RNS , gS : RNS → RNS × RNI and

hS : RNS → RNO are source system functions. In addition to the source system, let

consider a nonlinear target system similarly as in (2.5):

y(k + r) = FT (x(k)) + GT (x(k))u(k), (7.7)

where

FT (x(k)) = hT (f rT (x(k))) (7.8)

and

GT (x(k)) =
∂

∂u(k)

[
hT
(
f r−1
T (fT (x(k)) + gT (x(k))u(k))

)]
(7.9)

Chapter 7. Deep Neural Network-Based Control 105

are decoupling functions, in which fT : RNS → RNS , gT : RNS → RNS × RNI and

hT : RNS → RNO are target system functions. As discussed in [102], the DNN

module approximates

û1(k) = [GS(x(k))]−1 (y∗(k + r)−FS(x(k))) . (7.10)

By substituting (7.2) and (7.10) into (7.8), one can see that the ideal reference

u2(k) for achieving exact tracking is

u2(k) = α∗e∗(k + r), (7.11)

where

α∗ = [GT (x(k))]−1 (7.12)

and

e∗(k + r) = y∗(k + r)−FT (x(k))− GT (x(k))u1(k). (7.13)

Remark 7.3. To achieve exact tracking, the online learning module should predict

the tracking error of the target system that would result from applying u1(k).

The error prediction in (7.13) depends on the current state x(k), the reference

u1(k) from the DNN module, and the future desired output y∗(k + r). When

the dynamics of the source and the target systems are not known, one may use

supervised learning to train a model online to approximate (7.13).

Remark 7.4. For training an online model to approximate (7.13), at each time step

k, one may construct a dataset with paired inputs I2 = {x(h− r),u(h− r),y∗(h)}
and outputs O2 = {y∗(h)− y(h)} over the past NP time steps h ∈ {k −NP , ..., k},
where NP is the size of the dataset. Then, the error ẽ(k+ r) can be predicted using

the online model with input I2 = {x(k),u1(k),y∗(k + r)}.

Given the predicted error ẽ(k + r), another component to be determined for

computing u2(k) is the gain α. With an online model F (x(k),u1(k),y∗(k + r))

approximating (7.13), it can be shown that α∗ can be obtained from α̂ = −
[
∂F
∂u1

]−1

.

In practice, due to noise in the systems, the online estimation of α∗ can be non-

trivial.

106 7.2. Transfer Learning

7.2.1 System Similarity

Definition 7.2.2. Two systems are similar, if at any given state x(k), the applica-

tion of an input u(k) to the systems results in similar outputs y(k + r) [143].

For the similarity discussion, let assume source and target systems are linearised

(or linear) to simplify the analysis:x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k),
(7.14)

where A ∈ RNS×NS , B ∈ RNS×NI and C ∈ RNO×NS are constant system matrices.

It can be shown that the input and output of system (7.14) are related by

y(k + r) = Ax(k) + Bu(k), (7.15)

where r is the relative degree of system (7.14),

A = CAr (7.16)

and

B = CAr−1B. (7.17)

From (7.15), the input-output relationship is fully characterized by A and B, which

can be thought as the state-to-output gain vector and the input-to-output gain,

respectively.

Definition 7.2.3. If {AS,BS} and {AT ,BT} are gain matrices defined as in (7.16)

and (7.17) related to the source and target systems, respectively, the similarity

factor S between the source and target systems can be defined as:

S =

[
S1

S2

]
=

[
1− BTBS

AT − BTBSAS

]
. (7.18)

The terms S1 and S2 characterize the differences in the input-to-output gain and

state-to-output gain vector between the source and target systems, respectively.

Note that S ≡ 0, iff AT ≡ AS and BT ≡ BS, i.e., the state-to-output and input-to-

output gains of two systems are identical.

Chapter 7. Deep Neural Network-Based Control 107

Assumption 9. The output of the offline DNN u1(k) corresponds to the inverse

of the source system

u1(k) =
1

BS
(y∗(k + r)−ASx(k)) , (7.19)

where AS and BS are the gains of the source system, and x(k) and y∗(k + r) are

the state and desired output of the target system.

Assumption 10. The error in the prediction can be bounded:

Λ = ‖e∗(k + r)− ẽ(k + r)‖

≤ β1‖y∗(k + r)‖+ β2‖x(k)‖+ β3,
(7.20)

where β1, β2, and β3 are some positive constants.

In addition, by Assumption 3 the target system is input-to-state stable. It can be

shown that the state of system (7.14) can be bounded as follows:

‖x‖∞ ≤ L1‖u‖∞ + L2‖x0‖, (7.21)

L1 and L2 are some positive constants.

Theorem 7.2.1 (Stability of DNN). Consider a target system represented by (7.14)

and the control architecture in Fig. 7.2, where the reference of the online learning

module u2(k) has the form of (7.3). Under Assumptions 3, 4, 9, and 10, the overall

system is bounded-input bounded-state (BIBS) stable if

|α| (‖S2‖+ β2) <
β4

L1

, (7.22)

where β4 = 1− L1

∥∥∥AS

BS

∥∥∥.

Proof. At time step k, the output of the online learning module is u2(k) = αẽ(k+r),

where α is a constant gain and ẽ(k+r) is the predicted tracking error. The adjusted

reference u(k) sent to the target baseline system is u(k) = u1(k) +αẽ(k+ r), where

u1(k) is the output of the offline DNN module. By Assumptions 9 and 10, u(k) can

be written as

u(k) =
1

BS
(y∗(k + r)−ASx(k)) + α (e∗(k + r)− Λ) . (7.23)

108 7.2. Transfer Learning

For a target system represented by (7.14), e∗(k + r) in (7.13) can be written as

e∗(k + r) = y∗(k + r)−ATx(k)− BTu1(k)

= y∗(k + r)−ATx(k)− BT
BS

(y∗(k + r)−ASx(k)) .
(7.24)

By substituting the expression of e∗(k + r) into (7.23),

u(k) =

(
1

BS
+ αS1

)
y∗(k + r)−

(
AS
BS

+ αS2

)
x(k)− αΛ. (7.25)

Moreover, by Assumptions 3 and 10, ‖x‖∞ and ‖y∗‖∞ can be related by the

following inequality:

‖x‖∞ ≤ L1

(∥∥∥∥ 1

BS

∥∥∥∥+ |α|‖S1‖+ β1|α|
)
‖y∗‖∞

+ L1

(∥∥∥∥ASBS
∥∥∥∥+ |α|‖S2‖+ β2|α|

)
‖x‖∞ + L1β3|α|+ L2‖x0‖.

(7.26)

From (7.26), if

1− L1

(∥∥∥∥ASBS
∥∥∥∥+ |α|‖S2‖+ β2|α|

)
> 0, (7.27)

or equivalently

|α| (‖S2‖+ β2) <
β4

L1

, (7.28)

then the state of the system can be bounded as follows:

‖x‖∞ ≤
L1

(∥∥∥ 1
BS

∥∥∥+ |α|‖S1‖+ β1|α|
)
‖y∗‖∞ + L1β3|α|+ L2‖x0‖

1− L1

(∥∥∥AS

BS

∥∥∥+ |α|‖S2‖+ β2|α|
) . (7.29)

By Assumption 4, y∗ is bounded, and hence ‖y∗‖∞ is also bounded, then the system

state is bounded, and the overall system is BIBS stable.

Chapter 7. Deep Neural Network-Based Control 109

7.3 Simulation Results

The source system is selected as:
x(k + 1) =

 0 1

−0.15 0.8

x(k) +

0

1

u(k)

y(k) =
[
−0.2 1

]
x(k).

(7.30)

while the target system is selected as:
x(k + 1) =

 0 1

−0.24 1

x(k) +

0

1

u(k)

y(k) =
[
−0.1 1

]
x(k).

(7.31)

A DNN module can be designed to enable the system to achieve exact tracking on

untrained trajectories. The offline DNN module is trained to control the source

system in (7.30) but is used to enhance the tracking performance of the target

system in (7.31).

Remark 7.5. The source system in (7.30) and the target system in (7.31) are

minimum phase and have relative degrees r = 1. The source system has two poles

at {0.3, 0.5} and a zero at 0.2; while the target system has two poles at {0.4, 0.6}
and a zero at 0.1. When implementing the learning modules, the controlled systems

are considered to be black boxes for which only input-output data and some basic

properties, e.g., relative degree, are known.

The offline inverse module is trained on a source system, from which abundant

data has been collected. The collected data can often be compactly represented

by parametric regression techniques. For the source system (7.30), the DNN

module is trained and used to enhance the target system (7.31) with the proposed

online learning approach. The DNN module of the source system is a three-layers

feedforward network with 20 hyperbolic tangent neurons in each hidden layer.

The input and output of the DNN module are I1 = {x1(k), x2(k), y∗(k + 1)}
and O1 = {u1(k)}. The training dataset is constructed from the source system’s

response on 25 sinusoidal trajectories with different combinations of frequencies

and amplitudes.

110 7.3. Simulation Results

The online error prediction module is a local model trained on a small dataset

constructed from the latest observations of the target system. The objective of

incorporating the online module is to achieve fast adaptation to the dynamic

differences between the source and target systems. In the simulation, a Gaussian

process (GP) regression model is utilized for learning the error prediction module

online. Based on Remark 7.4, the input and output of the online module are selected

to be I2 = {x1(k), x2(k), u1(k), y∗(k+1)} and O2 = {ẽ(k+1)}, respectively. At each

time step k, a fixed-sized training dataset is built based on the latest 15 observations;

in particular, the input and output are I2 = {x1(p−1), x2(p−1), u(p−1), y∗(p)} and

O2 = {y∗(p)− y(p)} for p ∈ {k − 15, . . . , k}, respectivelly. For the simulation, the

GP model uses the squared-exponential kernel K(ξ, ξ′) = σ2
1 exp

(
−1

2

∑
i

(ξi−ξ′i)2
l2i

)
and polynomial explicit basis functions {1, ξi, ξ2

i }, where ξ denotes the input to the

module and ξi denotes the i-th component of ξ, li is the length scale associated

with the input dimension ξi, and σ2
1 is the prior variance [144]. The length scales li

are identical for all input dimensions in the simulation. The gain α∗ is estimated

based on the online error prediction module as α̂ = −
[
∂F
∂u1

]−1

, where F denotes

the function represented by the GP regression model.

7.3.1 Discussion

The performances of the proposed approach are tested on the target systems

in (7.31). The desired test trajectory is:

y∗(t) = sin
(π

4
t
)

+ cos
(π

8
t
)
− 1, (7.32)

where t = 1.5× 10−3k is the continuous-time variable. This test trajectory is not

previously used in the training of the offline learning module.

Fig. 7.3 compares the predicted error from the online module and the analytical

error prediction of the target system computed based on (7.13). It can be seen that

the online module designed based on Remark 7.4 is able to accurately predict the

error of the target system that would result from applying the reference u1 alone.

On the test trajectory, RMSE of the online module prediction is approximately

2.9× 10−7.

Chapter 7. Deep Neural Network-Based Control 111

0 5 10 15 20 25 30

Time

-0.5

 0.0

 0.5

P
re

d
ic

te
d
 E

rr
o
r

Exact Error Prediction Eqn. (9)

Online Learning Module Prediction (RMS Error = 2.9e-07)

Figure 7.3: Plot of the error prediction from the online learning module.

Fig. 7.4 shows the outputs of the target system when the baseline controller is

applied (grey curve), the baseline system is enhanced by the offline module alone

(green curve), and the baseline system is enhanced by both the online and the offline

modules (blue curve). As compared to the baseline system, the offline module alone

reduces the tracking RMSE of the target system from 3.97 to 0.44. The online

module further reduces the tracking RMSE to 9×10−5. Applying the offline and the

online learning modules jointly allows the target system to achieve approximately

exact tracking on a test trajectory that is not seen by the source or the target

system a-priori.

0 5 10 15 20 25 30

Time

-15.0

-10.0

 -5.0

 0.0

T
a
rg

e
t
S

y
s
te

m
 O

u
tp

u
t

Desired

Target System Baseline (RMS Error = 3.97)

w/ DNN of Source System (RMS Error = 0.44)

w/ DNN of Source System and Online Module (RMS Error = 9e-05)

Figure 7.4: Output of the target system controlled by three different approaches.

112 7.4. Experimental Results

7.4 Experimental Results

With impromptu tracking of hand-drawn trajectories as the benchmark prob-

lem [145], the proposed online learning approach is used for transferring the DNN

module trained on a source quadrotor system – Parrot ARDrone 2.0 – to a target

quadrotor system – Parrot Bebop 2. With the ARDrone as the testing platform, it

is shown that a DNN module trained offline can effectively enhance the impromptu

tracking performance of the quadrotor on arbitrary hand-drawn trajectories. The

DNN module trained on ARDrone is leveraged to enhance the impromptu tracking

performance of Bebop and further apply the proposed online learning approach to

achieve high-accuracy tracking. The offboard position controller receives the refer-

ence position pr and reference velocity vr, and computes roll and pitch commands

φ and θ, yaw rate command ωψ, and z-velocity command vz.

A DNN module is trained offline to approximate the inverse of the ARDrone

baseline system dynamics. The input and output of the DNN module are I1 =

{x∗(k + 4) − x(k), y∗(k + 4) − y(k), z∗(k + 3) − z(k), v∗x(k + 3) − vx(k), v∗y(k +

3) − vy(k), v∗z(k + 2) − vz(k),θ(k),ω(k)} and O1 = {pr(k) − p(k),vr(k) − v(k)},
respectively. The DNN module consists of fully-connected feedforward networks

with 4 hidden layers of 128 rectified linear units. The training dataset of the

DNN module is constructed from the ARDrone baseline system response on a 400s

3-dimensional sinusoidal trajectory. At a sampling rate of 7Hz, approximately 2′800

pairs of data points are collected for training. For 30 hand-drawn test trajectories,

this offline DNN module is able to reduce the impromptu tracking error of the

ARDrone baseline system by 43% on average.

Based on Remark 7.4, the input and output of the online learning module are I2 =

{p(k),v(k),θ(k),ω(k),pr(k),vr(k), x∗(k + 4), y∗(k + 4), z∗(k + 3), v∗x(k + 3), v∗y(k +

3), v∗z(k+ 2)} and O2 = {x̃(k+ 4), ỹ(k+ 4), z̃(k+ 3), ṽx(k+ 3), ṽx(k+ 3), ṽx(k+ 2)},
respectively. In the experiment, to make the online learning more efficient, instead of

predicting the position and velocity errors directly, a GP model has been trained to

predict the position of UAV, i.e., p(k+ r) = [x(k+ 4), y(k+ 4), z(k+ 3)]. Then, the

predicted error is computed by subtracting the predicted position from future desired

position, i.e., p∗(k+ r)−p(k+ r), where p∗(k+ r) = [x∗(k+ 4), y∗(k+ 4), z∗(k+ 3)].

The predicted position errors are used to compute the corrections for the position

components; while the velocity reference corrections are numerically approximated

Chapter 7. Deep Neural Network-Based Control 113

with a first-order finite difference scheme. Due to the measurement noise in

the experiment, instead of estimating the parameter α online, constant gains

α = (5, 5, 0.5) for the x, y, and z axes are used.

7.4.1 Discussion

Figs. 7.5 and 7.6 compares the tracking performance of three control strategies on

Bebop on one of the test hand-drawn trajectories. When comparing the performance

of Bebop system enhanced by ARDrone DNN (green curve) and the performance

of Bebop baseline system (grey curve), ARDrone DNN reduces the delay and the

amplitude errors in Bebop tracking response. Along this particular trajectory, the

DNN module alone reduces the tracking RMSE of Bebop from approximately 0.42m

to 0.26m. When further comparing with the performance of the DNN-enhanced

system with the addition of the online learning module (blue curve), the tracking

of Bebop, especially in the x-direction, is brought close to the desired trajectory.

With the online learning module, the tracking RMSE is reduced to approximately

0.14m. When the online learning module is applied, there are small overshoots

at the locations with larger curvatures. The overshoots may be reduced with the

online tuning of the hyperparameters of GP and online estimations of α.

Fig. 7.7 summarises the performance errors of three control strategies on 10 hand-

drawn trajectories. When compared with Bebop baseline system performance (grey

bars), the direct application of the transferred DNN module (green bars) reduces

the tracking RMSE of Bebop baseline system by an average of 46%. With the

addition of the online learning module (blue bars), an average of 74% tracking RMSE

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

x (m)

0.5

1

1.5

2

z
 (

m
)

Desired

Bebop Baseline System

w/ DNN

w/ DNN & Online Module

Figure 7.5: Trajectory tracking of the target system in the xz-plane by three
control strategies.

114 7.4. Experimental Results

-2.0

 0.0

 2.0
x
 (

m
)

Desired

Bebop Baseline System

w/ DNN

w/ DNN & Online Module

0 2 4 6 8 10 12 14 16 18

Time (s)

0.5

1.0

1.5

2.0

z
 (

m
)

Figure 7.6: Position trajectories of the target system controlled by three control
strategies.

reduction is achieved. Two additional sets of results are included for comparison:

the performance of ARDrone enhanced by the DNN module trained on ARDrone

system (yellow bars), and the performance of Bebop enhanced by a DNN module

trained on Bebop system (light-blue bars). Without requiring further data collection

and offline training, the inclusion of the online learning module effectively reduces

the tracking RMSE of Bebop to values that are comparable to those of the cases

where the quadrotors are enhanced by their own offline DNN modules. These results

demonstrate the efficiency of the proposed online learning module to leverage past

experience and reduce data re-collection and training.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 2 3 4 5 6 7 8 9 10

RM
S

Er
ro

r (
m

)

Trajectory Number

Bebop Baseline Bebop w/ ARDrone DNN Bebop w/ ARDrone DNN & Online Learning ARDrone w/ Own DNN Bebop w/ Own DNN
Avg. RMS Error = 0.54 m Avg. RMS Error = 0.29 m Avg. RMS Error = 0.13 m Avg. RMS Error = 0.14 m Avg. RMS Error = 0.15 m

Figure 7.7: Tracking performance of the target system on 10 hand-drawn trajec-
tories.

Chapter 7. Deep Neural Network-Based Control 115

7.5 Conclusion

In this chapter, the impromptu tracking problem is considered, and an online

learning approach is proposed to efficiently transfer a DNN module trained on

a source robot system to a target robot system. In the theoretical analysis, an

expression of the online module is derived for achieving exact tracking. Then, based

on a linear system formulation, an approach for characterising system similarity is

proposed, and insights on the impact of the system similarity on the stability of

the overall system are provided in the knowledge transfer problem. The approach

is verified experimentally by applying the proposed online learning approach to

transfer a DNN inverse dynamics module across two quadrotor platforms (Parrot

ARDrone 2.0 and Parrot Bebop 2). On 10 arbitrary hand-drawn trajectories, the

DNN module of the source system reduces the tracking error of the target system

by an average of 46%. The incorporation of the online module further reduces the

tracking error and leads to an average of 74% error reduction. These experimental

results show that the proposed online learning and knowledge transfer approach

can efficaciously circumvent data recollection on the target robot, and thus, the

costs and risks associated with training new robots to achieve higher performance

in impromptu tasks.

Part IV

Fuzzy Neural Network-Based

Control

117

Chapter 8

Neural Fuzzy-Based Control

It has been shown that fuzzy logic has an exceptional ability to handle the

uncertainties in the system [25]. Therefore, FLC is one of the most popular model-

free approaches to control nonlinear systems when their precise mathematical

model is challenging to obtain [146]. However, one weakness of FLCs is that their

parameters have to be tuned to deal with uncertainties [26]. On the other hand,

ANNs are a family of supervised learning models that mimics human brain [17].

Therefore, ANNs are widely used in many applications due to their ability to learn

from input-output data [147]. However, the main weakness of ANNs is that their

inner workings are difficult to interpret [27]. The combination of FLS and ANN –

FNN – fuses the reasoning ability of FLS to handle uncertain information with the

training capability of ANN to learn from the controlled process [28]. Hence, FNN

adopts the advantages of both FLS and ANN [29].

In this chapter, potentials of FNNs are explored under various operational conditions.

First, Section 8.1 revises the definition of FNN. Next, Sections 8.2 and 8.3 proposes

SMC theory-based and LM theory-based training algorithms, respectively. Then,

Sections 8.4 and 8.5 show simulation and experimental results, respectively, for a

quadcopter UAV in the presence of periodic wind gust. Finally, the conclusions are

drawn in Section 8.6.

Supplementary Material:

ROS package for the proposed FNN controllers: github.com/andriyukr/controllers.

Video for the experimental results: tiny.cc/FNN.

119

https://github.com/andriyukr/controllers
http://tiny.cc/FNN

120 8.1. Mathematical Preliminaries

8.1 Mathematical Preliminaries

In a general FNN, the input I = {I1, . . . , INI
} to FNN is fuzzified by NF MFs.

Identically to type-1 FLS, FS and MF in FNN are defined as in Definition 3.1.1,

where the parameters of MFs are among the tunable parameters of FNN. Typically,

FNN employs Takagi-Sugeno-Kang (TSK) fuzzy model in which the antecedent

part is FS, while the consequent part is the function of input variables.

Definition 8.1.1. If NR is the number of rules in a rule-base R, then the jth rule

Rj ∈ R, j ∈ {1, . . . , NR}, is indicated as IF− THEN statement, i.e.:

Rj :

IF I1 is A1,j and . . . and INI
is ANI ,j,

THEN cj =

NI∑
i=1

wi,jIj + w0,j

, i ∈ {1, . . . , NR}, (8.1)

where Aj,i represents antecedent FS and wi,j are weights in FNN.

Assumption 11. The network weights W =


w0,1 · · · w0,NR

...
. . .

...

wNI ,1 · · · wNI ,NR

 ∈ R(NI+1)×NR

are bounded, i.e.:

‖W(t)‖∞ ≤ cW ∀t, (8.2)

where cW is some positive constants.

Remark 8.1. Often, the weights wi,j = 0, i ∈ {1, . . . , NI}∧j ∈ {1, . . . , NR}, which

results in a zero-order TSK-FNN model, i.e., cj = w0,j, j ∈ {1, . . . , NR}.

The weights wi,j, i ∈ {1, . . . , NR} ∧ j ∈ {0, . . . , NI}, are updated following a set of

rules during the learning process. The firing strength fi, i ∈ {1, . . . , NR}, of each

rule is calculated with the multiplication t-norm as in Definition 3.1.5. The output

signal of FNN uFNN is computed as the weighted average of each rule’s output [148]:

uFNN =

∑NR

i=1 fici∑NR

i=1 fi
=

NR∑
i=1

f ici, (8.3)

where f i is the normalized value of the ith firing strength:

f i =
fi∑NR

i=1 fi
. (8.4)

Chapter 8. Neural Fuzzy-Based Control 121

In the proposed approach, the input is I = {e, ė}, i.e., the position feedback error

and its time derivative; while the output is O = {uFNN}, i.e., the control signal.

Therefore, there are two input neurons (NI = 2) and one output neuron (NO = 1).

To fuzzify two inputs, NF Gaussian MF in (3.7) are adopted.

In the proposed control scheme, FNN works in parallel with a conventional PD

controller, as shown in Fig. 8.1. The conventional PD controller is utilized as an

ordinary feedback controller to ensure the global asymptotic stability of the system

and provide sufficient time for the initialization of the learning process of FNN.

Thus, FNN learns the control parameters and takes over the control responsibility

of the system. The overall control input u to the controlled system is defined by:

u = uPD − uFNN, (8.5)

where uPD and uFNN are the control signals produced by the PD controller in (6.8)

and the FNN controller in (8.3), respectively.

By Assumptions 6 and 11, the consequent ci, i ∈ {1, . . . , NR}, in (8.1) is bounded,

i.e.:

|ci(t)| ≤ cc, i ∈ {1, . . . , NR} ∀t, (8.6)

where cc is some positive constant. From Remark 3.3 and (8.4), it is evident that

f i ∈ [0, 1], i ∈ {1, . . . , NR}. (8.7)

In addition, from (8.3), (8.6) and (8.7), uANN(t) and u̇ANN(t) are also bounded

signals, i.e.: |uFNN(t)| ≤ cu

|u̇FNN(t)| ≤ cu̇
∀t, (8.8)

where cu and cu̇ are some positive constants.

d
dt

FNN

PD

e ė

uFNN

−

uPD

+

u

Figure 8.1: Control scheme: FNN in parallel with PD controller.

122 8.2. Sliding Mode Control-Based Learning

8.2 Sliding Mode Control-Based Learning

The zero dynamics of the learning error coordinate uPD(t) can be described as a

time-varying sliding surface SPD by utilizing the principles of the SMC theory [149]:

SPD(uFNN, u) = uPD(t) = uFNN(t) + u(t) = 0. (8.9)

By using this condition, the FNN structure is trained to become a nonlinear regulator

which assists the conventional parallel controller to obtain the desired response.

Hence, the sliding surface for the nonlinear system under control is as follows:

S(e, ė) = ė+ λe. (8.10)

where λ > 0 is a parameter which determines the slope of the sliding surface. A

sliding motion will appear on the sliding manifold SPD(uFNN, u) = 0 after a finite

time th, if the condition SPD(t)ṠPD(t) = uPD(t)u̇PD(t) < 0 is satisfied for all t in

some nontrivial semi-open subinterval [t, th) ⊂ (−∞, th). Since it is desired to design

a dynamical feedback adaptation mechanism, or an on-line learning algorithm, for

the FNN parameters such that the sliding mode condition above is enforced.

Theorem 8.2.1 (Stability of FNN with SMC). If the SMC theory-based parameter

update rules for FNN are as follows:

ċ1,i = İ1

ċ2,i = İ2

ḋ1,i = −α d31,i
(I1−c1,i)2 sign(uPD)

ḋ2,i = −α d32,i
(I2−c2,i)2 sign(uPD)

ẇ0,j = −α fj

F
T
F

sign(uPD)

α̇ = γ|uPD| − γνα

∀i ∈ {1, . . . , NF}

∀j ∈ {1, . . . , NR},
(8.11)

where F =


f 1,1 · · · f 1,NF

...
. . .

...

fNF ,1
· · · fNF ,NF

, α > 0 is an adaptive learning rate, γ ≥ 0 and

ν ≥ 0 are learning parameters; then, the control signal uPD(t) will converge to a

small neighbourhood of zero during a finite time th for any arbitrary initial condition

uPD(0).

Chapter 8. Neural Fuzzy-Based Control 123

Proof. To fuzzify two inputs, the following Gaussian MF in (3.7) are adopted:
µ1,j(I1) = exp

[
− (I1−c1,j)2

2d21,j

]
µ2,j(I2) = exp

[
− (I2−c2,j)2

2d22,j

] ∀j ∈ {1, . . . , NF}. (8.12)

The time derivatives of (8.12) is as follows:µ̇1,j(I1) = −2A1,j(A1,j)
′µ1,i(I1)

µ̇2,j(I2) = −2A2,j(A2,j)
′µ2,j(I2)

∀j ∈ {1, . . . , NF}, (8.13)

where A1,j =
I1−c1,j
d1,j

and A2,j =
I2−c2,j
d2,j

. The time derivative of (8.4) can be obtained

as follows:

ḟ i,j = −f i,jK̇i,j + f i,j

NF∑
i=1

NF∑
j=1

f i,jK̇i,j ∀i ∈ {1, . . . , NF} ∀j ∈ {1, . . . , NF},

(8.14)

where K̇i,j = 2
(
A1,iA

′
1,i + A2,jA

′
2,j

)
.

The Lyapunov function is selected as follows:

V =
1

2
u2

PD(t) +
1

2γ
(α− α∗)2. (8.15)

The time derivative of (8.15) is given by:

V̇ = uPD (u̇FNN + u̇) +
1

γ
α̇ (α− α∗) . (8.16)

The time derivative of (8.3) is given by:

u̇FNN =

NF∑
i=1

NF∑
j=1

(
ċi,jf i,j + ci,j

˙f i,j

)
. (8.17)

124 8.2. Sliding Mode Control-Based Learning

By replacing (8.17) to (8.16), the following equation is obtained:

V̇ = uPD

(
NF∑
i=1

NF∑
j=1

(
ċi,jf i,j + ci,j

(
−f i,jK̇i,j + f i,j

NF∑
i=1

NF∑
j=1

f i,jK̇i,j

))
+ u̇

)

+
1

γ
α̇(α− α∗)

= uPD

(
NF∑
i=1

NF∑
j=1

ċi,jf i,j − 2

NF∑
i=1

NF∑
j=1

f i,j (A1,i(A1,i)
′ + A2,j(A2,j)

′) ci,j

+ 2

NF∑
i=1

NF∑
j=1

(
f i,jci,j

NF∑
i=1

NF∑
j=1

f i,j (A1,i(A1,i)
′ + A2,j(A2,j)

′)

)
+ u̇

)

+
1

γ
α̇(α− α∗),

(8.18)

where 
Ȧ1,j =

(İ1−ċ1,j)d1,j−(I1−c1,j)ḋ1,j
d21,j

Ȧ2,j =
(İ2−ċ2,j)d2,j−(I2−c2,j)ḋ2,j

d22,j

∀j ∈ {1, . . . , NF}. (8.19)

From (8.11), follows:

A1,jȦ1,j = A2,jȦ2,j = αsign(uPD). (8.20)

Consequently, (8.18) becomes

V̇ = uPD

(
NF∑
i=1

NF∑
j=1

ċi,jf i,j − 4

NF∑
i=1

NF∑
j=1

ci,jf i,jαsign(uPD)

+ 4

NF∑
i=1

NF∑
j=1

(
f i,jci,j

NF∑
i=1

NF∑
j=1

f i,jαsign(uPD)

)
+ u̇

)
+

1

γ
α̇(α− α∗).

(8.21)

Since
∑NF

i=1

∑NF

j=1 f i,j = 1; then, (8.21) becomes

V̇ = uPD

(
NF∑
i=1

NF∑
j=1

ċi,jf i,j + u̇

)
+

1

γ
α̇(α− α∗), (8.22)

where

ċi,j = − W ij

W
T
W
αsign(uPD). (8.23)

Chapter 8. Neural Fuzzy-Based Control 125

Furthermore,

V̇ = uPD (−αsign(uPD) + u̇) +
1

γ
α̇(α− α∗)

= −α|uPD|+ |uPD|cu̇ +
1

γ
α̇(α− α∗)

= −(α− α∗)|uPD| − α∗|uPD|+ |uPD|cu̇ +
1

γ
α̇(α− α∗).

(8.24)

Considering the adaptation law of α as follows,

α̇ = γ|uPD| − γνα; (8.25)

then, (8.24) becomes:

V̇ = |uPD|cu̇ − α∗|uPD| − ν(α− 1

2
α∗)2 +

ν

4
α∗2. (8.26)

By taking α∗ as cu̇ ≤ α∗

2
, it follows:

V̇ ≤ −α
∗

2
|uPD|+

ν

4
α∗2, (8.27)

which implies that the Lyapunov function decreases until |uPD| < να∗

2
. So that uPD

will stay bounded. Furthermore ν is a design parameter and it is possible to take

this value as small as desired. The relation between the sliding function Sp and the

zero adaptive learning error level SPD is as follows:

SPD = uPD = kpe = kpSp. (8.28)

126 8.3. Levenberg-Marquardt-Based Learning

8.3 Levenberg-Marquardt-Based Learning

Theorem 8.3.1 (Stability of FNN with LM). If the LM theory-based parameter

update rules for FNNs are as follows:

ċ1,i = İ1

ċ2,i = İ2

ḋ1,i = −α d31,i
(I1−c1,i)2 sign(uPD)

ḋ2,i = −α d32,i
(I2−c2,i)2 sign(uPD)

ẇ0,j = −γ
(
F
T
F + δI

)−1

Fsign(uPD)

∀i ∈ {1, . . . , NF}

∀j ∈ {1, . . . , NR},
(8.29)

where δ is the adaptive parameter and is selected equal to

δ = max
(
F
T
F, α

)
, (8.30)

in which α has a constant value; then, the learning error uPD(t) will converge to a

small neighbourhood of zero during a finite time th for any arbitrary initial condition

uPD(0).

Proof. The Lyapunov function is selected as follows:

V =
1

2
u2

PD(t). (8.31)

The time derivative of (8.31) is given by:

V̇ = uPD

(
NF∑
i=1

NF∑
j=1

ẇi,jf i,j + u̇

)
. (8.32)

Chapter 8. Neural Fuzzy-Based Control 127

From (8.29), follows:

V̇ = uPD

(
γF

T
(
−δ−1 + δ−1F

(
I + F

T
δ−1F

)−1

F
T
δ−1

)
Fsign(uPD) + u̇PD

)
= uPD

(
γF

T
(
−δ−1 + δ−1F

(
δ + F

T
F
)−1

F
T
)

Fsign(uPD) + u̇PD

)
= −δ−1γF

T
F|uPD|+ |uPD|δ−1γF

T
F
(
δ + F

T
F
)−1

F
T
F + cu̇|uPD|

= −δ−1γF
T
F|uPD|+ |uPD|δ−1γF

T
F
(
δ + F

T
F
)−1 (

δ + F
T
F− δ

)
+ cu̇|uPD|

= −δ−1γF
T
F|uPD|+ γ|uPD|δ−1F

T
F− γ|uPD|F

T
F
(
δ + F

T
F
)−1

+ cu̇|uPD|

= −γ|uPD|F
T
F
(
δ + F

T
F
)−1

+ cu̇|uPD|.

(8.33)

By considering δ = F
T
F, (8.33) becomes:

V̇ = −0.5γ|uPD|+ cu̇|uPD|. (8.34)

It is further assumed that γ > 4cu̇, so that:

V̇ ≤ −1

4
γ|uPD|. (8.35)

8.4 Simulation Results

The control gains for the PD controller are chosen as follows:kp = 2.5

kd = 0.005.
(8.36)

128 8.4. Simulation Results

The initial control parameters of the FNN controller are:

c1,x = c1,y = c1,z =
[
−10 0 10

]T
c2,x = c2,y = c2,z =

[
−1 0 1

]T
d1,x = d1,y = d1,z =

[
5 5 5

]T
d2,x = d2,y = d2,z =

[
0.5 0.5 0.5

]T
αx = αy = αz = 0.001,

(8.37)

while the initial condition of time variable weight coefficients wi,j(0) are chosen

randomly to be sufficiently small, i.e., wi,j(0) ∈ [0, 0.001]. The adaptive learning

parameters for FNN with SMC theory-based rules are chosen as:γx = γy = γz = 1

νx = νy = νz = 0.9;
(8.38)

FNN with LM theory-based rules:γx = γy = γz = 1.5

αx = αy = αz = 1;
(8.39)

with the update rate dt = 0.01s.

In the classical UAV flight missions, climbing, hovering, ascending and descending

curves as well as level flight are considered as typical flight manoeuvres. Therefore,

in the experimental scenario, all aforementioned manoeuvres will be included during

the flight of quadrotor in order to evaluate the robustness of proposed controllers

under the flight sequence which resembles the actual UAV flights. At the beginning,

the quadrotor UAV is hovering at the initial position. Then, it starts to make a

smooth eight-shaped trajectory. Throughout the simulation, the module of the

desired linear velocity is kept constant and equal to 2.5m/s. Besides, the feasibility

of flight under the dynamic constraints of quadrotor is ensured by saturating the

control input signals and defining trajectory as a time-based trajectory.

In the tested scenario, to evaluate the efficacy of the proposed control strategy, the

periodic wind gust is added. The wind gust blows with the speed vw = 3.0m/s

Chapter 8. Neural Fuzzy-Based Control 129

along [−1,−1, 0] direction for the first 20s. Then, its orientation changes to the

opposite direction, to change back to the original direction after 40s.

8.4.1 Discussion

Fig. 8.2 shows the trajectory tracking in the presence of periodic wind for PD

controller and two FNN controllers which are tuned by SMC and LM methods

which operate in parallel with the conventional PD controller. From Fig. 8.2, it

is evident that the PD controller has a notable steady-state error due to internal

uncertainties such as lack of modelling as well as external disturbance from the wind.

Besides, when the PD controller works alone, it cannot eliminate the steady-state

error. However, in the case of SMC-FNN and LM-FNN controllers, the steady-state

error is notably reduced because of adaptive learning capabilities of FNN structure.

As a result, trajectory tracking performance of quadrotor which uses intelligent

FNN structures becomes significantly better compared to the normal case, when

the PD controller is only used.

As for output control signals, Fig. 8.3 and Fig. 8.4 present control signals for x,

y and z axes in case when the PD controller is operating in parallel with FNN

controller which are tuned by SMC and LM approach, respectively. As can be seen

from these figures, the FNN controller is taking over the control responsibilities

from PD controller, and therefore, after some time the output control signal from

-15
-10

-5
0

y [m]

5
10

15-15
-10

-5

x [m]

0
5

10

0

10

5

40

35

30

25

20

15

15

z
[m

]

Reference trajectory
PD
PD+SMCFNN
PD+LMFNN

Figure 8.2: Trajectory tracking of different FNN position controllers in presence
of wind.

130 8.4. Simulation Results

Time [s]
0 5 10 15 20 25 30 35 40 45 50

O
ut

pu
t s

ig
na

l

-4

-2

0

2

4
PD
SMCFNN

(a) x-axis

Time [s]
0 5 10 15 20 25 30 35 40 45 50

O
ut

pu
t s

ig
na

l

-5

0

5
PD
SMCFNN

(b) y-axis

Time [s]
0 5 10 15 20 25 30 35 40 45 50

O
ut

pu
t s

ig
na

l

-2

-1

0

1

2

PD
SMCFNN

(c) z-axis

Figure 8.3: Control signals for x, y and z axes generated by PD and SMC-FNN.

PD controller approaches to zero neighbourhood, and then only FNN controls

the system as it is supposed to do in such kind of control schemes. It should be

noted that when trajectory sequence changes or some disturbances occur the output

control signals from the PD controller become non-zero. In such case, FNN restarts

the learning process and takes over control responsibilities again as shown in Fig. 8.3

and Fig. 8.4.

The Euclidean errors in presence and absence of wind are shown in Fig. 8.5. In

both cases, the combination of PD and FNN controllers, PD + SMC-FNN and

PD + LM-FNN, give a significantly less error than the conventional PD controller

when it works alone. On the other hand, the PD controller can be tuned in a more

aggressive way to achieve superior results, although this is not practical in real life

due to the lack of modelling and unknown disturbances in real-time applications.

Chapter 8. Neural Fuzzy-Based Control 131

Time [s]
0 5 10 15 20 25 30 35 40 45 50

O
ut

pu
t s

ig
na

l

-4

-2

0

2

4
PD
LMFNN

(a) x-axis

Time [s]
0 5 10 15 20 25 30 35 40 45 50

O
ut

pu
t s

ig
na

l

-5

0

5

PD
LMFNN

(b) y-axis

Time [s]
0 5 10 15 20 25 30 35 40 45 50

O
ut

pu
t s

ig
na

l

-2

-1

0

1

2
PD
LMFNN

(c) z-axis

Figure 8.4: Control signals for x, y and z axes generated by PD and LM-FNN.

Time [s]
0 5 10 15 20 25 30 35 40 45 50

E
uc

lid
ea

n
er

ro
r

[m
]

0

0.5

1

1.5

2

2.5

PD
PD+SMCFNN
PD+LMFNN

Figure 8.5: Euclidean MSE of different FNN position controllers in presence of
wind.

Furthermore, aggressive tuning tends to be the case dependent, and therefore, it

cannot give the comparable performance in different conditions; while adaptive

learning capabilities of FNN structure are essential for real-world applications.

132 8.5. Experimental Results

8.5 Experimental Results

The experimental flight tests for the trajectory tracking problem were conducted in

the indoor environment. The aircraft used for the experiments is Parrot AR.Drone

2.0 Power Edition UAV, which is a velocity controlled commercial quadrotor. The

control approaches are implemented in Linux using ROS and C++ environment.

8.5.1 Discussion

The performance of the PD controller alone and FNN controller trained by SMC

and LM working in parallel with the conventional PD controller for the eight-shaped

time-based trajectory is presented. The maximum speed along the trajectory is kept

to be 1m/s. To evaluate the efficacy of the proposed control strategy, an industrial

fan, which generates maximum wind gust of 2m/s, is used to imitate the external

disturbances. The wind gust blows along the [1,−1, 0] direction.

In Fig. 8.6, the trajectory tracking is shown for the PD controller and FNN controllers

which are tuned by SMC and LM. As can be seen, the steady-state error is notably

reduced because of the learning capabilities of FNN structure. This can also be

seen from the Euclidean error and the average RMSE values from ten experiments

which are shown in Fig. 8.7 and Table 8.1, respectively. The combination of PD and

FNN controller gives a significantly less error than the conventional PD controller

when it works alone. It should be noted that FNN controllers decrease the PD

controller RMSE error by about 36%.

x [m]
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y
[m

]

-1.5

-1

-0.5

0

0.5

1

Reference
PD
PD+SMCFNN
PD+LMFNN

(a) in xy-plane

210
x [m]

-1-2-1.5-1
y [m]
-0.500.51

1.2

1.15

1.1

1.05

1

0.95

0.9

0.85

0.8

0.75

z
[m

]

Reference
PD
PD+SMCFNN
PD+LMFNN

(b) in 3D view

Figure 8.6: Trajectory tracking for vw = 2m/s.

Chapter 8. Neural Fuzzy-Based Control 133

Time [s]
0 2 4 6 8 10 12

E
uc

lid
ea

n
er

ro
r

[m
]

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

PD
PD+SMCFNN
PD+LMFNN

Figure 8.7: Euclidean error with wind gust vw = 2m/s.

Hence, the trajectory tracking performance of the quadrotor which uses intelligent

FNN structure becomes significantly better compared to the normal case when

the PD controller is only utilized. However, SMC-based and LM-based FNN

controllers were not able completely to take over the control responsibilities from

the PD controller as shown in Fig. 8.8 and 8.9. Whereas both FNN controllers were

dominating in simulation studies, it was not the case for the real-time tests. The

reason for this is the space limitation of the Motion Capture Lab which measures

5×7m2. Therefore, the active area for UAV is around 3×5m2. In such a small area,

also by having challenging trajectory, the FNN controller does not have enough

time to learn. Besides, there exists a communication delay between computer and

AR.Drone UAV. This latency is mainly caused by the WiFi protocol delay as well

as the down-sampling/buffering step performed by AR.Drone firmware prior to

sending the feedback over WiFi.

Table 8.1: Average Euclidean RMSE for considered controllers [m].

Controller PD SMC-based FNN LM-based FNN

RMSE 0.327 0.210 0.228

134 8.6. Conclusion

Time [s]
0 2 4 6 8 10 12

O
ut

pu
t s

ig
na

l

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

PD
SMCFNN

(a) in x-axis

Time [s]
0 2 4 6 8 10 12

O
ut

pu
t s

ig
na

l

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

PD
SMCFNN

(b) in y-axis

Time [s]
0 2 4 6 8 10 12

O
ut

pu
t s

ig
na

l

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

PD
SMCFNN

(c) in z-axis

Figure 8.8: Control signals for x, y and z axes generated by PD and SMC-FNN.

Time [s]
0 2 4 6 8 10 12

O
ut

pu
t s

ig
na

l

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

PD
LMFNN

(a) in x-axis

Time [s]
0 2 4 6 8 10 12

O
ut

pu
t s

ig
na

l

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

PD
LMFNN

(b) in y-axis

Time [s]
0 2 4 6 8 10 12

O
ut

pu
t s

ig
na

l
-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
PD
LMFNN

(c) in z-axis

Figure 8.9: Control signals for x, y and z axes generated by PD and LM-FNN.

8.6 Conclusion

In this chapter, SMC theory and LM-based learning algorithm for intelligent FNN

controller are proposed for the control and stabilisation of the quadrotor UAV along

a predefined trajectory in the presence of wind gust conditions. The stability analysis

of the proposed parameter update rules is presented. It was also demonstrated that

proposed methods are capable of significantly reducing the steady-state errors and

overcome the disturbances and existed uncertainties which are generated by lack of

modelling. Extensive simulations in ROS and Gazebo environment are conducted

to evaluate the performance of the proposed controllers with the conventional PD

controller. In order to further test the proposed methods, the real-time experiments

have been also performed by using OptiTrack Motion Capture System. Experimental

results show that the combination of PD and FNN which is tuned by SMC and LM

algorithms gives a significantly lower steady-state error than the conventional PD

controller when it works alone.

Chapter 9

Deep Fuzzy Neural

Network-Based Control

It has been shown that DNNs are good at approximating knowledge, but they

do not explain how they take their decisions [30]. On the other hand, FLSs are

good at explaining their decisions, but generally, they are not good at acquiring

new information [26]. The limitations of these two techniques have been a driving

force behind the creation of hybrid systems where the combination of DNN and

FLS can overcome the drawbacks of each individual method [31]. In the literature,

there are attempts to integrate strengths of learning capability of neural networks

and reasoning ability provided by fuzzy logic, called FNN [91]. However, these

approaches usually utilise sequential learning paradigms [94]. Correspondingly, one

may ask whether a joint learning framework exists that fuses wisely these two

methods [150].

In this chapter, potentials of DFNNs are explored under various operational condi-

tions. First, Section 9.1 revises the definition of DFNN. Then, Sections 9.3 and 9.4

show simulation and experimental results for linear system and quadrotor UAVs,

respectively. Finally, the conclusions are drawn in Section 9.5.

Supplementary Material:

Video for the experimental results: tiny.cc/DFNN.

135

http://tiny.cc/DFNN

136 9.1. Mathematical Preliminaries

9.1 Mathematical Preliminaries

To deal with the problems described in Chapter 2, an adaptive controller which

can learn system dynamics online and deal with uncertainties is required. It

has been shown that DNNs are able to learn from input-output data, whereas

fuzzy logic has an ability to handle noise and uncertainties. The DNN with one

antecedent fuzzification layer, also called DFNN, can be used for learning control of

nonlinear systems. The DFNN neurons are organised in input layer with NI neurons,

fuzzification layer with (NI ×NF) neurons, NL fully-connected hidden layers with

NH,h, h ∈ {1, . . . , NL}, neurons in each layer, and output layer with NO neurons,

as shown in Fig 9.1. The input I = {I1, . . . , INI
} to DFNN is fuzzified by NF MFs.

Then, the fuzzified input {µF1(I1), . . . , µFNF
(I1), . . . , µF1(INI

), . . . , µFNF
(INI

)} is

forwarded to the first hidden layer of DFNN through the network weights W1.

The hidden layers in DFNN are organized in a fully-connected structure with the

network weights Wh, h = 2, . . . , NL. Finally, the output O = {O1, . . . ,ONO
} is

computed by applying the network weights WNL+1 to the output from the last

hidden layer.

...

Input
layer

I

...

...

...

Fuzzification
layer

µF (I)

...
...

Hidden layers

...

Output
layer

O

I1

INI

W1 Wh WNL+1 O1

ONO

Figure 9.1: Structure of DFNN organised in input layer with NI neurons, fuzzi-
fication layer with (NI ×NF) neurons, NL fully-connected hidden layers with
NH,h, h ∈ {1, . . . , NL}, neurons in each layer, and output layer with NO neurons.

Chapter 9. Deep Fuzzy Neural Network-Based Control 137

9.2 Network Training

The training is subdivided into two phases: offline pre-training and online train-

ing [151]. During the offline pre-training phase, a conventional controller performs

a set of trajectories and the batch of training samples is collected. Then, DFNN-

based controller, called DFNN0, is pre-trained on the collected data samples, to

approximate the inverse of the system’s dynamics. However, DFNN0 cannot adapt

to the new conditions; therefore, the online training is required. During the online

learning phase, DFNN controls the system and adapts the control input to improve

performances. The expert knowledge encoded into the rule-base, thanks to the

fuzzy mapping, provides the adaptation information to DFNN. The approximation

of the inverse of the system dynamics is a typical regression problem; therefore, the

cost function for both offline and online training is the mean squared error.

9.2.1 Offline Pre-Training

During the offline pre-training phase, a feed-forward DFNN0 learns the approximate

inverse dynamics of the system by adjusting the weights
{
W0

1, . . . ,W
0
NL+1

}
in

the network. In this control scheme, shown in Fig. 9.2, a conventional controller,

e.g., PID controller, controls the system alone. Hence, it is utilized as an ordinary

feedback controller to provide labelled training samples for DFNN0. Each labelled

training sample D0(k) consists of input I0(k) and expected output O0(k) pair:

D0(k) =< I0(k),O0(k) >

=< {x(k − r̄),y(k)}, {u(k − r̄)} > .
(9.1)

where r̄ = max
∀i∈[1,nO]

ri. The training of DFNN0 involves back-propagation to minimize

the loss over all training examples, and the network weights
{
W0

1, . . . ,W
0
NL+1

}
are

updated until the over-fitting appears. After the training, DFNN0 can approximate

the inverse dynamics of the nominal system. The pseudo-code of the offline pre-

training is given in Algorithm 2.

138 9.2. Network Training

{
W0

1, . . . ,W
0
NL+1

}

Controller

DFNN0

System
y∗ + e u

û

y
−

x

Figure 9.2: Block diagrams of the offline pre-training of DFNN by conventional
controller (solid lines represent calculated quantities, dashed lines represent
measured quantities, dotted lines represent estimated quantities).

9.2.2 Online Training

During the online training phase, DFNN controls the system and, at the same time,

learns how to improve the control performances. Since DFNN training requires

supervised learning, another process has to provide feedback about its performances.

In the proposed approach, FLS is used to monitor the behaviour of the controlled

system. By its nature, FLS incorporates the expert knowledge in the form of rules

and uses this knowledge to provide useful advice [152]. The control scheme of the

online training is shown in Fig. 9.3.

The objective is to learn the control of the system by only looking at its performance,

i.e., the tracking error:

e(k) = y∗(k)− y(k), (9.2)

and its time derivative:

ė(k) = ẏ∗(k)− ẏ(k), (9.3)

Algorithm 2: Offline pre-training of DFNN.

Input: {NH,1, . . . , NH,NL
}

Output: Pre-trained DFNN0

begin
while k < MaxSamples do

Get x(k − r̄), y(k), and u(k − r̄)
Collect D0(k) in (9.1)

end
DFNN0 ← ConstructNetworkLayers(NH,1, . . . , NH,NL

){
W0

1, . . . ,W
0
NL+1

}
← InitializeWeights()

Train DFNN0 on D0

end

Chapter 9. Deep Fuzzy Neural Network-Based Control 139

∆û

{W1, . . . ,WNL+1}

DFNN

FLS

System

y∗

+

û y

−
e

x

Figure 9.3: Block diagrams of the online training of DFNN by FLS (solid lines
represent calculated quantities, dashed lines represent measured quantities, dotted
lines represent estimated quantities).

where ẏ = ∂y
∂k
∈ RNO is the time derivative of the output from the system, and

ẏ∗ = ∂y∗

∂k
∈ RNO is the time derivative of the desired output.

In the proposed approach, FLS observes the behaviour of the system controlled

by DFNN, and, depending on the situation, corrects the action from DFNN. The

possible evolutions of the tracking error are depicted in Fig. 9.4. For example, if

the error is positive, i.e., ej(k) > 0, and its time derivative is also positive, i.e.,

ėj(k) > 0, then the system diverges (top red curve in Fig. 9.4). In this case, FLS

will force DFNN to decrease the control signal uj(k) significantly to stabilize the

system, i.e., ∆uj(k) � 0. In another possible case, if the error is negative, i.e.,

ej(k) < 0, and its time derivative is zero, i.e., ėj(k) = 0, then the error is steady

(bottom purple line in Fig. 9.4). In this case, DFNN falls down in a local minimum

and FLS will give a small positive perturbation, i.e., ∆uj(k) > 0. Finally, if the

error is zero, i.e., ej(k) = 0, and its time derivative is also zero, i.e., ėj(k) = 0, then,

this is the optimal case (green line in Fig. 9.4) and no action has to be taken, i.e.,

∆uj(k) = 0.

All these intuitive rules can be formally represented by a typical Mamdani FLS. For

each case, one rule Ri, i ∈ {1, . . . , NR}, exists in the rule-base in Table 9.1, where

the colour of the cell corresponds to the curve colour in Fig. 9.4. The inputs to FLS

are selected to be the tracking error and its time derivative, i.e., ej(k) and ėj(k);

while the output is the correction signal, i.e., ∆uj(k). The inputs are represented

by three FSs: negative, zero and positive; while the output can belong to five FSs:

big decrease, small decrease, no changes, small increase and big increase.

The antecedent MFs are selected to be triangular MFs, as defined in (5.4) and

illustrated in Fig. 5.1. On the other hand, the consequent FSs are selected to

140 9.2. Network Training

Figure 9.4: Possible evolution of the controlled dynamical system. The system
can diverge (red curves), converge (blue curves), it can have a steady error (purple
lines), or the error can be zero (green line).

be singleton MFs, as illustrated in Fig. 9.5. Hence, by using the approach in

Section 5.2.1, FM which represents FLS described in Table 9.1 in an analytical form

can be generated:

ϕ(ej, ėj) = |ej| −
|ėj|
2
− 3

4
|ej ėj| −

3

4
ej ėj. (9.4)

Finally, (9.4) in its multidimensional form can be used to update the control signal:

∆û(k) = αϕ (e(k), ė(k)) , (9.5)

where α > 0 is a scaling factor.

Table 9.1: Rule-base for the updates of uj(k).

ej(k)
ėj(k)

Negative Zero Positive

Big Big Small
Negative R1 :

decrease
R2 :

increase
R3 :

increase

Small No Small
Zero R4 :

decrease
R5 :

changes
R6 :

decrease

Small Big Big
Positive R7 :

increase
R8 :

increase
R9 :

decrease

Chapter 9. Deep Fuzzy Neural Network-Based Control 141

0 ϕ0

µC

1

−1 −0.5 0.5 1

C1 = BD C2 = SD C3 = NC C4 = SI C5 = BI

Figure 9.5: ”Big decrease” (BD), ”small decrease” (SD), ”no change” (NC), ”small
increase” (SI) and ”big increase” (BI) consequent FSs for the update of the
control signal represented by five singleton MFs.

Remark 9.1. A large α allows learning faster at the cost of possible divergence or

oscillation of the controlled system. A smaller α may allow learning more safely

and conservatively but may make the learning significantly longer.

Remark 9.2. If e(k) and e(k−1) are approximately 0, i.e., e(k) ≈ 0∧e(k−1) ≈ 0;

then, ė(k) approaches 0, i.e., ė(k) → 0. Consequently, from (9.5) and (9.4), ∆û

is asymptotically equivalent to 0, i.e., ∆û(k) ∼ 0. Therefore, the weights are not

updated, and the convergence condition is reached.

Each labelled training sample D(k) consists of input I(k) and corrected output

O(k) pair:

D(k) =< I(k),O(k) >

=< {x(k),y∗(k + r̄)}, {û(k) + ∆û(k)û(k)} > .
(9.6)

At each iteration, DFNN is adapted with this training sample, and the new output

from the network is computed:

û(k) = DFNN(I(k)). (9.7)

The pseudo-code of online training is provided in Algorithm 3.

For the system in (2.1), a necessary condition for the stability of the inverse

dynamics, and hence for the effectiveness of the DFNN-based approach, is the

stability of the zero dynamics of the system [153].

142 9.2. Network Training

Algorithm 3: Online training of DFNN.

Input: Pre-trained DFNN0

Output: Trained DFNN
begin

DFNN ← DFNN0

repeat
Get y(k), y∗(k), ẏ(k) and ẏ∗(k)
e(k)← y∗(k)− y(k) by using (9.2)
ė(k)← ẏ∗(k)− ẏ(k) by using (9.3)
∆û(k)← αFLS(e(k), ė(k)) by using (9.5)
û(k)← DFNN(I(k)) by using (9.7)
Adapt DFNN with D(k) by using (9.6)
Send u(k) to the system

until Stop

end

Theorem 9.2.1 (Stability of DNN). Consider the system in (2.1) and the control

signal û(k) in (9.7). The overall closed-loop system is bounded-input bounded-

output (BIBO) stable iff Assumptions 1, 2, 3, 4 and 7 are verified.

Proof. A dynamical system is BIBO stable, if for any bounded input corresponds a

bounded output. In the proposed approach, the input is y∗; while the output is y.

i) If the controlled system is the nominal system on which DFNN0 was trained,

and if the output from DFNN0, û(k), accurately approximates the exact

inverse of the system, u(k), i.e., û(k) ≈ u(k); then, the inverse model update,

∆û(k) ∼ 0. Thus, the control input to the system is u(k). From (2.5), the

system’s output, y, can be bounded by:

‖y(k)‖∞ ≤ c1‖x(k)‖∞ + c2‖u(k)‖∞ + c3 ∀k, (9.8)

where c1, c2 and c3 are some positive constants. From Assumption 3, the

system’s state, x, can be bounded by:

‖x(k)‖∞ ≤ c4‖u(k)‖∞ + c5‖x(0)‖∞ + c6 ∀k, (9.9)

Chapter 9. Deep Fuzzy Neural Network-Based Control 143

where c4, c5 and c6 are some positive constants. From (2.8), the system’s

input, u, can be bounded by:

‖u(k)‖∞ ≤ c7‖x(k)‖∞ + c8‖y∗(k)‖∞ + c9 ∀k, (9.10)

where c7, c8 and c9 are some positive constants. By using (9.9) and (9.10)

in (9.8), the overall closed-loop system in Fig. 9.2 is BIBO stable.

ii) If the controlled system is different from the nominal system on which DFNN0

was trained, or if the output from DFNN0, û(k), does not approximate

accurately the exact inverse of the system, u(k), i.e., û(k) 6≈ u(k); then, the

inverse model update, ∆û(k) 6= 0. Therefore, the control input to the system

is û(k) + ∆û(k). From (2.5), the system’s output, y, can be bounded by:

‖y(k)‖∞ ≤ c1‖x(k)‖∞ + c2‖û(k) + ∆û(k)‖∞ + c3

≤ c1‖x(k)‖∞ + c2‖û(k)‖∞ + c2‖∆û(k)‖∞ + c3 ∀k.
(9.11)

From Assumption 3, the system’ state, x, can be bounded by:

‖x(k)‖∞ ≤ c4‖û(k) + ∆û(k)‖∞ + c5‖x(0)‖∞ + c6

≤ c4‖û(k)‖∞ + c4‖∆û(k)‖∞ + c5‖x(0)‖∞ + c6 ∀k.
(9.12)

From (2.8), the output from the DFNN module, û, can be bounded by:

‖û(k)‖∞ ≤
NL∑
i=1

cW,i‖Wi(k)‖∞ + c10 ∀k, (9.13)

where c10 is some positive constant. It has to be noted that the inputs to

DFNN and FLS modules are bounded by the Gaussian and triangular MFs

in (3.7) and (5.4), respectively. Simultaneously, the output from the FLS

module is bounded by the singleton MFs in Fig. 9.5, i.e.:

‖∆û(k)‖∞ ≤ α <∞ ∀k. (9.14)

By using (9.12), (9.13) and (9.14) in (9.11), the overall closed-loop system in

Fig. 9.3 is BIBO stable.

Since both cases with and without online learning are BIBO stable, the overall

closed-loop system is BIBO stable.

144 9.2. Network Training

In the universal approximation theorem [154], it has been proven that ANN with

a single-hidden-layer containing a finite number of neurons can approximate any

continuous function. In [155], the authors found the relation between the number

of hidden neurons and the function complexity. Therefore more layers and neurons

the neural network has, more complex mathematical relation it can approximate

with higher accuracy.

On the other hand, from the asymptotic analysis, the runtime complexity for the

forward-propagation is O(NL ·N3
H +NL ·NH) ≡ O(NL ·N3

H). While the runtime

complexity for the back-propagation is O(NQN ·NL·N4
H+NL·N3

H) ≡ O(NQN ·NL·N4
H),

where NQN is the number of iterations in the quasi-Newton method. Moreover, the

runtime complexity for FM in (9.5) is constant w.r.t. the architecture of the network,

i.e., O(1). The dominant operation in DFNN0 is the forward-propagation; therefore,

the runtime complexity of DFNN0 is polynomial. However, DFNN with online

learning involves both forward-propagation and back-propagation; therefore, the

runtime complexity of DFNN is also polynomial but asymptotic to O(NQN ·NL ·N4
H).

At the same time, from the asymptotic analysis, the space complexity to store

DFNN is O(NI ·NM ·NH + (NL− 1) ·N2
H +NH ·NO) ≡ O(NL ·N2

H). Moreover, the

space complexity for FM in (9.5) is constant w.r.t. the architecture of the network,

i.e., O(1).

Table 9.2 summarises the runtime and space complexities for the considered con-

trollers. It is possible to observe that DFNN has the highest runtime complexity,

since it performs the online back-propagation which is computationally expensive.

Besides, the space complexity of DFNN0 and DFNN is asymptotically equivalent,

since most of the space is occupied to store the weights of DFNN.

Remark 9.3. The architecture of DFNN in the proposed approach should be

chosen as a compromise between the learning capability of the neural network and

the update time through the back-propagation.

Table 9.2: Asymptotic analysis of different controllers.

Complexity PID DFNN0 DFNN

Runtime O(1) O(NL ·N3
H) O(NQN ·NL ·N4

H)

Space O(1) O(NL ·N2
H) O(NL ·N2

H)

Chapter 9. Deep Fuzzy Neural Network-Based Control 145

9.3 Simulation Results

The proposed approach is tested on four single-input-single-output systems: nominal

system, nominal system with internal uncertainties, nominal system with external

disturbance, and nominal system with noisy measurements. The desired trajectory

is:

y∗(k) =
1

3
sin (3πk) +

1

2
cos (2πk)− 1. (9.15)

while its time derivative is:

ẏ∗(k) = π cos (3πk)− π sin (2πk). (9.16)

The nominal nonlinear system is selected as:
x(k + 1) =

 x2

x1 − x2
1

+

0

1

u(k)

y(k) = −0.2x1 + x2.

(9.17)

The nominal system in (9.17) with internal uncertainties is:
x(k + 1) =

 0.5x2

0.5x1 − 0.5x2
1

+

 0

0.5

u(k)

y(k) = −0.1x1 + 0.5x2.

(9.18)

The nominal system in (9.17) with external variable disturbance is:
x(k + 1) =

 x2

x1 − x2
1

+

0

1

u(k) +

 0

cos(2k)


y(k) = −0.2x1 + x2.

(9.19)

The nominal system in (9.17) with noisy measurements is:
x(k + 1) =

 x2

x1 − x3
1

+

0

1

u(k)

y(k) = −0.2x1 + x2 +N (0, y(k − 1)).

(9.20)

146 9.3. Simulation Results

Throughout the simulations, the systems in (9.17)–(9.20) are assumed to be black-

boxes. Therefore, only input-output data and some basic properties, such as the

relative degree r̄, are used. It is possible to verify with (2.2) that the relative degree

r̄ = 1 for the systems in (9.17)–(9.20). A feed-forward DFNN with hyperbolic

tangent (tanh) activation functions is designed. According to (9.1) and (9.6),

DFNN has three inputs (NI = 3) and one output (NO = 1). In addition, after

some heuristic analysis and experimental trials, the architecture of the network is

chosen to consist of one fuzzification layer with three MFs (NF = 3) and two fully

connected hidden layers (NL = 2) with 16 neurons in each layer (NH,1 = NH,2 = 16).

The scaling factor α = 0.1 in (9.5), for all cases.

In order to collect the training data for the offline pre-training, the nominal system

is controlled by the PID controller which has been tuned by trial-and-error. Thus,

2′000 input-output training pairs D0(k) =< {x1(k−1), x2(k−1), y(k)}, {u(k−1)} >
are stored. Then, DFNN0 is trained on D0 by using the LM algorithm. After that,

the pre-trained DFNN controls the system online and, at each iteration, it is updated

with D(k) =< {x1(k), x2(k), y∗(k + 1)}, {u(k) + ∆u(k)} >.

9.3.1 Discussion

To show the efficiency of the proposed approach, the performances of the developed

DFNN with online learning are compared with the performances of the exact

analytical inverse of the system dynamics, PID controller (used for the collection of

training samples), type-1 FNN (T1-FNN)-based controller with Gaussian antecedent

MFs and LM theory-based update rules presented in Section 8.3, and interval type-2

FNN (IT2-FNN)-based controller with elliptic antecedent MFs and SMC theory-

based adaptation laws from [6], and DFNN0 controller without online training.

As can be seen from Figs. 9.6–9.9, the exact analytical system inverse is able to

track perfectly the reference trajectory. However, in real-world it is difficult, and

sometimes even impossible, to calculate the exact inverse dynamics of the system.

From Fig. 9.6, it is possible to observe that both DFNN0 and DFNN with online

Chapter 9. Deep Fuzzy Neural Network-Based Control 147

learning are able to track precisely the desired trajectory of the nominal system.

Besides, DFNN0 approximates very accurately the exact inverse of the system

in (2.8). From Fig. 9.7, it is possible to observe that DFNN0 is not able to track

the desired trajectory on the system with modified dynamics, and its performances

are worse than the ones of PID, T1-FNN and IT2-FNN controllers; while DFNN

with online learning is able to learn the new system dynamics and obtain a good

performance. From Fig. 9.8, it is possible to observe that PID, T1-FNN and DFNN0

become unstable with time-varying disturbance; while DFNN with online learning

is able to learn new conditions and obtain a good performance. From Fig. 9.9, it is

possible to observe that PID controller is not able to deal with this level of noise;

while all T1-FNN, IT2-FNN, DFNN0 and DFNN are able to control the system.

As can be seen from Table 9.3, the exact analytical system inverse is able to track

the reference trajectory with negligible error. On the other hand, the DFNN-based

controller with online learning outperforms all PID, T1-FNN, IT2-FNN and DFNN0

for all tested cases in terms of MAE. Only in the case with noisy measurements,

DFNN with online learning tries to learn also the noise which makes its performances

worst than DFNN0.

Table 9.3: Comparison of different controllers in terms of MAE [m].

Controller
System System System System

in (9.17) in (9.18) in (9.19) in (9.20)

Inverse ∼ 0 ∼ 0 ∼ 0 ∼ 0

PID 0.265 0.386 ∞ ∞
T1-FNN 0.216 0.261 ∞ 0.225

IT2-FNN 0.196 0.225 0.223 0.204

DFNN0 7.53× 10−6 0.505 ∞ 0.097

DFNN 1.01× 10−6 0.090 0.038 0.100

148 9.3. Simulation Results

(a) Tracking. (b) Control signal. (c) Tracking error.

Figure 9.6: Performances on the nominal system in (9.17).

(a) Tracking. (b) Control signal. (c) Tracking error.

Figure 9.7: Performances on the system with internal uncertainties in (9.18).

(a) Tracking. (b) Control signal. (c) Tracking error.

Figure 9.8: Performances on the system with external disturbance in (9.19).

(a) Tracking. (b) Control signal. (c) Tracking error.

Figure 9.9: Performances on the system with noisy measurements in (9.20).

Chapter 9. Deep Fuzzy Neural Network-Based Control 149

9.4 Experimental Results

To validate the capabilities of the proposed controller, the trajectory following

problem of a quadcopter UAV is considered. The experimental platform used in this

work is Parrot Bebop 2 quadcopter UAV, and ROS is used to communicate with

UAV. The visual-inertial odometry algorithm is used to provide the UAV’s real-

time position at 24Hz. This information is fed into the ground station computer

(CPU: 2.6GHz, 64bit, quad-core; GPU: 4GB; RAM: 16GB DDR4) where the

controllers are executed. The computed control signal is sent to UAV at 100Hz.

The dynamical system of UAV is subdivided into three simpler subsystems to reduce

the complexity and accelerate the learning process. Three feed-forward DFNNs are

used to learn the control mapping for each controlled axis: x, y and z, as depicted

in Fig. 2.5. From the dynamical model of UAV, it is possible to calculate that the

relative degree r̄ = 2. According to (9.1) and (9.6), each DFNN has three inputs

(NI = 3) and one output (NO = 1). In addition, after some heuristic analysis

and experimental trials, the architecture of the network is chosen to consist of one

fuzzification layer with three MFs (NF = 3), and two fully connected hidden layers

(NL = 2) with 64 neurons in each layer (NH,1 = NH,2 = 64) and with hyperbolic

tangent (tanh) activation functions. The inputs to DFNN for the x-axis are the

state components relative to the x-axis, {x(k), u(k), x∗(k + 2)}, and the output is

the desired pitch angle, {θ∗(k)}. Similarly, the inputs to DFNN for the y-axis are

the state components relative to the y-axis, {y(k), v(k), y∗(k + 2)}, and the output

is the desired roll angle, {φ∗(k)}. Finally, the inputs to DFNN for the z-axis are

the errors and their time derivatives on the z-axis, {z(k), w(k), z∗(k + 2)}, and the

output is the desired vertical velocity, {w∗(k)}.

The error type is an important term in the loss index, and, in the proposed approach,

it is chosen as the normalized squared error. The initialization algorithm is used to

bring the neural network to a stable region of the loss function, and, in the proposed

approach, it is selected as the random search. The training algorithm is the core

part of the training, and, in the proposed approach, the quasi-Newton method is

chosen for both offline and online training. The scaling factor α = 0.1 in (9.5).

Remark 9.4. The DFNN controllers with and without online learning consist of

three independent and parallel sub-networks for x, y and z axes to speed up the

learning.

150 9.4. Experimental Results

To prepare the training samples of the flight data, the system was controlled by

a conventional stable position controller alone. The current and past states were

saved as inputs, while the corresponding control signals was saved as the labelled

output. By using the PID controller, 100′000 instances have been collected in

the training dataset for each axis. This dataset is large enough for the trajectory

tracking application, however, the proposed method does not have any limitations

on the dataset size. The training data include circular and eight-shaped trajectories

on xy-, xz- and yz-planes with the reference speed of 1m/s.

The tracking of four circular trajectories with different working conditions (slow,

fast, near-ground and with payload) have been tested. The study cases are designed

in a way to exploit different components of UAV dynamics. Furthermore, the visual-

inertial algorithm for state estimation produces noisy output [117]. In order to

show the efficiency and efficacy of the DFNN-based controller with online learning,

it is compared with a well-tuned PID controller (used for the collection of training

samples), T1-FNN-based controller with Gaussian antecedent MFs and LM theory-

based update rules presented in Section 8.3, and IT2-FNN-based controller with

elliptic antecedent MFs and SMC theory-based adaptation laws from [6], and

DFNN0 controller without online training.

Remark 9.5. For real-time experiments, the inverse dynamics of the system is not

used to control the system, since, in real-world, it is difficult, and sometimes even

impossible, to estimate the exact inverse dynamics of the system.

9.4.1 Discussion

The first study case is the tracking of the slow circular trajectory with a radius

of 2m on the xy-plane at a velocity of 1m/s which has also been used during the

pre-training phase. This case study is a reference example where UAV operates in

its nominal conditions. The results for this study case are shown in Fig. 9.10.

The second study case is the tracking of the fast circular trajectory with a radius

of 2m on the xy-plane at a velocity of 2m/s. In this study case, the fast responses

of the controllers and the robustness of the visual-inertial state estimator to the

motion blur are verified. The results for this study case are shown in Fig. 9.11.

Chapter 9. Deep Fuzzy Neural Network-Based Control 151

The third study case is the tracking of the circular trajectory while flying at a height

of 0.2m. In this study case, the ground effect generates an external disturbance on

UAV. The results for this study case are shown in Fig. 9.12.

The fourth study case is the tracking of the circular trajectory while flying with a

payload (Odroid-C2 onboard computer on top and office scissors attached to the

front left arms) of 209g. In this study case, the parameters of the dynamical model

of UAV (mass and moments of inertia) are altered by the payload. The results for

this study case are shown in Fig. 9.13.

Experimental results for five controllers (PID, T1-FNN, IT2-FNN, DFNN0 and

DFNN) on four different circular trajectories (slow, fast, near-ground and with

payload) are illustrated in Figs. 9.10–9.13, respectively. It is possible to observe

from Figs. 9.10a–9.13a that DFNN-based controller with online training is able to

track more closely the reference trajectory. As visualized from Figs. 9.10b–9.13b,

DFNN-base controller has faster responses since it is able to estimate the evolution

of the system dynamics and compensate it. From Figs. 9.10c–9.13c, it is possible to

observe that DFNN-based controller with online training is able to learn the system

dynamics and decrease the tracking error on all tested trajectories.

For the statistical analysis of control performances, the experiments are repeated

five times for each controller-case combination for a total of 100 experiments under

quasi-same conditions. To compare the trajectory tracking performances, a box-plot

is presented in Fig. 9.14. It is possible to observe that on average the DFNN-

based controller with online learning outperforms other controllers on the tested

trajectories. It has to be emphasised that DFNN evolves online from the pre-trained

DFNN0 during the learning process. Moreover, as expected, DFNN0 has poor

performances in the cases which have not been used for its training. It is also

interesting to observe that the performances of the PID controller do not get worse

in case of near-ground and with payload trajectories, because derivative and integral

components can compensate for these disturbances. Furthermore, the FNN-based

controllers (T1-FNN and IT2-FNN) have similar performances for the slow, near-

ground and with payload trajectories because their fast learning capabilities can

compensate the disturbances coming from the ground effects and increased mass.

The maximum absolute error is lower for the online DFNN-based controller, even

for the cases unseen during the pre-training. Finally, DFNN-based controller with

online learning has the lowest variance of the error.

152 9.4. Experimental Results

(a) 3D view. (b) x, y and z axes. (c) Euclidean error.

Figure 9.10: Results for the slow circular trajectory at velocity of 1m/s.

(a) 3D view. (b) x, y and z axes. (c) Euclidean error.

Figure 9.11: Results for the fast circular trajectory at velocity of 2m/s.

(a) 3D view. (b) x, y and z axes. (c) Euclidean error.

Figure 9.12: Results for the near-ground circular trajectory at height of 0.2m.

(a) 3D view. (b) x, y and z axes. (c) Euclidean error.

Figure 9.13: Results for the circular trajectory with payload of 209g.

Chapter 9. Deep Fuzzy Neural Network-Based Control 153

Figure 9.14: Tracking performances of five controllers in four scenarios.

As can be seen from Table 9.4, the DFNN-based controller with online learning

outperforms all tested controllers in all tested study cases in terms of MAE. Averaged

results from numerous experiments depict that the overall improvement of 51%,

59%, 53% and 51% in terms of MAE is achieved as compared to a well-tuned PID

controller for slow, fast, near-ground and with payload cases, respectively.

Nevertheless, the online DFNN-based controller can learn promptly the system

dynamics, the computing time is still the main drawback of this controller because

of the online back-propagation. The computing time is polynomially proportional

to the number of hidden layers and the number of neurons in each hidden layer,

i.e., O(NL · N4
H). Therefore, deeper is the network, more complex functions it

can learn, but more computational power it requires. The average experimental

computation time for DFNN with online back-propagation is around 9.4ms, while

for PID, T1-FNN, IT2-FNN and DFNN0 without online learning this time is only

8µs, 11µs, 13µs and 32µs, respectively. However, 9.4ms is still an acceptable time

for real-time applications, which allows the controller to run at 100Hz.

Table 9.4: Comparison of different controllers in terms of MAE [m].

Trajectory PID T1-FNN IT2-FNN DFNN0 DFNN

Slow 0.640 0.593 0.568 0.387 0.307

Fast 1.710 1.182 1.265 1.204 0.704

Near-Ground 0.638 0.609 0.601 0.497 0.299

With Payload 0.620 0.555 0.546 0.570 0.306

154 9.5. Conclusion

9.5 Conclusion

In this chapter, a novel approach is presented for the control of dynamical systems

that improves the system’s control performance online by combining deep learning

and fuzzy logic. The learning is subdivided into two phases: offline and online

training. During the offline training phase, a conventional controller performs a set

of trajectories and a batch of training samples is collected. Then, a DFNN-based

controller, DFNN0, is pre-trained on the collected data samples. However, DFNN0

cannot adapt to new operating conditions different from the pre-training cases;

therefore, online training is required. During the online training phase, DFNN-

based controller takes control of the system and adapts to improve the tracking

performance. The expert knowledge encoded into the rule-base, thanks to the

derived fuzzy mapping, provides the adaptation information to DFNN allowing the

online learning. Once DFNNs are trained, the experimental results show that the

proposed approach improves the performance by more than 50% when compared to

a conventional controller. The results of this study might open doors to wider use

of DFNN-based controllers in real-world control applications.

Part V

Final Remarks

155

Chapter 10

Conclusion

In this thesis, a possible solution for an accurate trajectory following of UAVs in

uncertain and noisy environments is presented.

The investigation has started with T1-FLCs with different inference engines, namely

SFLC, Sta-NSFLC, Cen-NSFLC and Sim-NSFLC. Extensive simulation and ex-

perimental tests have shown that non-singleton FLCs are able to obtain better

control performances when compared to singleton FLCs, especially at higher flight

speeds which induce higher uncertainty and noise levels. Moreover, different input

fuzzification levels can achieve various capabilities for capturing input uncertainties.

In other words, the higher input fuzzification has more capability to handle higher-

level input noise. However, T1-FLCs can effectively handle only bounded levels of

uncertainty and noise, while real-world applications frequently have to deal with

high levels of uncertainty and multiple sources of noise.

There exist neither a systematic way to choose MFs to achieve better uncertainty

modelling capability nor an objective criterion to check its performance. A compar-

ative analysis is made in which IT2-FLCs are compared and contrasted to T1-FLCs

for modelling uncertainty. Elliptic MFs are unique amongst existing type-2 fuzzy

MFs because of the decoupled parameters for its support and width. The findings

say that IT2-FLCs with elliptic MFs have better performances when compared

to conventional PID controller and type-1 counterpart. However, the developed

IT2-FLCs are computationally slower than the traditional PID controller.

157

158 Chapter 10. Conclusion

Therefore, an alternative systematic approach to explicitly derive the mathematical

input-output relationships of T1-FLCs and IT2-FLCs has been presented. These

nonlinear closed-form relationships allowed to verify some important characteristics

of both T1-FLC and IT2-FLC, like symmetry, continuity and monotonicity. The

presented design method for IT2-FLC has only one parameter of FOU to be selected,

i.e., aggressiveness parameter. By only modifying this parameter, IT2-FLCs can

be designed in an easy manner to have more aggressive or smoother behaviour.

To prove these theoretical claims, the developed controllers have been tested in

simulation and experimental case studies for the way-points tracking control of UAV.

It has been shown that the theoretical claims and expectations match the results in

the case studies. However, one weakness of all FLCs is that the parameters of their

MFs have to be tuned to deal with uncertainties.

Another branch of artificial intelligence (AI)-based controllers is ANN-based con-

troller which enables learning for the control of UAV in various challenging conditions.

A fast flight manoeuvre at speeds of 18m/s is performed to show the superior per-

formance of the proposed controller. While performing a pre-defined task, UAV

experiences a single motor failure, and the controller handles the failure ensuring

the safety of the mission as well as UAV. The model-free nature of the controller

helps in accurate trajectory tracking even for high-speed and agile manoeuvres.

The advantage of the proposed controller is that it does not need a well-tuned set of

PD gains as it learns online and improves the performance metrics while following

the trajectory. Moreover, the proposed controller is computationally light to be

implemented on the onboard computer of UAV. The real-time experiments are

carried out in the outdoor environment with the use of RTK-GPS for localization.

For all the phases of the considered scenario, the proposed controller outperforms

the conventional PID controllers. The average improvement of the ANN-based

controller is above 40%. However, common single-hidden-layer ANNs are not able

to learn the complete inverse dynamics of the system.

Given the ability of DNNs to generalise knowledge, a DNN-enhanced control

architecture has been proposed to improve the tracking performance of traditional

feedback controllers for any given desired trajectory. For the problem of transfer

learning, an online learning approach has been proposed to efficiently transfer a

DNN module trained on a source robot system to control a target robot system.

An expression of the online module for achieving exact tracking has been derived.

Chapter 10. Conclusion 159

Then, based on a linear system formulation, an approach for characterising system

similarity has been proposed. This approach was verified experimentally by applying

the proposed online learning approach to transfer a DNN inverse dynamics module

across two similar but different quadrotor platforms. On 10 arbitrary hand-drawn

trajectories, the DNN module of the source system reduces the tracking error of

the target system by an average of 46%. The incorporation of the online module

further reduces the tracking error and leads to an average of 74% error reduction.

These experimental results show that the proposed online learning and knowledge

transfer approach can efficaciously circumvent data recollection on the target robot.

Additionally, in this thesis, SMC and LM theory-based learning algorithms for in-

telligent FNN controllers are proposed for the control and stabilising of a quadrotor

UAV along a predefined trajectory in the presence of periodic wind gust conditions.

It was also demonstrated that proposed methods are capable to significantly reduce

the steady-state errors and overcome the periodic disturbances and existed uncer-

tainties which are generated by the lack of modelling. Simulations and experimental

results show that the combination of PD and FNN which is tuned by SMC and

LM algorithms gives a significantly lower tracking error than the conventional PD

controller when it works alone.

In the end, in this thesis, a novel approach has been proposed for the control of

dynamical systems to improve system’s control performances online by combining

deep learning and fuzzy logic. The learning is subdivided into two phases: offline

and online training. During the offline training phase, a conventional controller

performs a set of trajectories and a batch of training samples is collected. Then,

a DFNN-based controller, DFNN0, is pre-trained on the collected data samples.

However, DFNN0 cannot adapt to new operating conditions different from the

pre-training cases; therefore, online training is required. During the online training

phase, DFNN-based controller takes control of the system and adapts to improve the

tracking performance. The expert knowledge encoded into the rule-base, thanks to

the derived fuzzy mapping, provides the adaptation information to DFNN allowing

the online learning. Once DFNNs are trained, the experimental results show that

the proposed approach improves the performance by more than 50% when compared

to a conventional controller. This approach might open new doors to a wider use of

DFNN-based controllers in real-world control applications.

160 10.1. Future Work

10.1 Future Work

In the future, the proposed adaptive controllers can be applied to solve some new

real-world problems in which they can obtain better results when compared to

classical approaches. A possible class of applications is the one where the system

dynamics varies drastically, e.g., cooperative aerial transportation with multirotor

UAVs. In the cooperative aerial transportation, several issues, such as reciprocal

interaction caused by multiple UAVs, should be considered. Besides, the physical

properties of the carried item may be either unknown, e.g., mass or the moments of

inertia, or variable, e.g., the COM of an item containing a fluid. Also, during the

transportation, aerial robots might be affected by unknown external disturbances,

e.g., wind gust which is exceptionally strong and unpredictable on high altitudes.

At the same time, autonomous drone racing is an exciting case study that aims to

develop innovative ways of solving complex problems. In autonomous drone racing,

the goal is to pass with UAV through a sequence of gates in a minimum amount

of time while avoiding collisions in an unknown environment by relying only on

onboard sensors and onboard computation. Thus, what makes drone racing such

an interesting challenge is the cumulative complexity of each sub-problem to be

solved, such as perception, localisation, path planning and, of course, control.

On the other hand, an adaptive controller can be designed to consider the character-

istics of the controlled system and working conditions by adjusting the aggressiveness

parameter of fuzzy mapping. For example, based on the uncertainty and noise

levels, FLC can be configured to operate in a smoother or more aggressive mode.

In addition, it has been demonstrated that generalised T2-FLCs have enhanced

capabilities of noise rejection. However, they are computationally complex and

expensive for real-time applications. One of the possible future directions can focus

on the management of this complexity in order to decrease it.

In the end, deep reinforcement learning is becoming one of the most popular AI-

based techniques since it resembles the human way of learning. A mobile robot, e.g.,

multirotor UAV, can be considered as an agent which performs actions and receives

rewards. This paradigm can be employed in many possible control applications,

e.g., learning control in an unknown environment.

Appendix A

Attitude of Rigid Body

The rotation of a rigid body in space can be parametrized by using three Euler angles:

roll (φ), pitch (θ) and yaw (ψ). By considering right-hand oriented coordinate

frame, the three single rotations are described by:

� R(x, φ) is the rotation around x-axis by φ;

� R(y, θ) is the rotation around y-axis by θ;

� R(z, ψ) is the rotation around z-axis by ψ.

They are represented by:

R(x, φ) =


1 0 0

0 cosφ − sinφ

0 sinφ cosφ

 , (A.1)

R(y, θ) =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 (A.2)

and

R(z, ψ) =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 . (A.3)

161

162 A.1. Transformation of Angular Velocities

The complete rotation matrix is the product of three successive rotations around

the world fixed z, y and x axes defined by (A.1)–(A.3):

R(φ, θ, ψ) = R(z, ψ)R(y, θ)R(x, φ)

=


cosψ cos θ cosψ sinφ sin θ − cosφ sinψ sinφ sinψ + cosφ cosψ sin θ

cos θ sinψ cosφ cosψ + sinφ sinψ sin θ cosφ sinψ sin θ − cosψ sinφ

− sin θ cos θ sinφ cosφ cos θ

 .
(A.4)

A.1 Transformation of Angular Velocities

The idea is to consider small changes in each Euler angle, and determine the effects

on the rotation vector. To get the angular rates in the proper frames, the x-axis

must be rotated into the inertial frame, the y-axis must be rotated by RT (x, φ)

into the first frame, and the z-axis must be rotated by RT (x, ψ)RT (y, θ) into the

second frame. The relationship between the body-fixed angular velocity vector ωB

and the rate of change of the Euler angles ω can be determined by resolving the

Euler rates into the body-fixed coordinate frame:

ωB =


φ̇

0

0

+ RT (x, φ)


0

θ̇

0

+ RT (x, ψ)RT (y, θ)


0

0

φ̇



=


1 0 − sin θ

0 cosφ sinφ cos θ

0 − sinφ cosφ cos θ

ω.
(A.5)

Taking the inverse of (A.5) gives

ω =


1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ

ωB. (A.6)

Appendix B

Hat and Vee Mapping

Let v =
[
v1 v2 v3

]T
be a vector in R3. Then, the hat map [v]∧ can be defined as

a mathematical operator R3 → SO(3):

[v]∧ =


0 −v3 v2

v3 0 −v1

−v2 v1 0

 . (B.1)

The hat map is equivalent to the cross product skew-symmetric matrix [v]×, i.e.:

[v]× ≡ [v]∧ . (B.2)

Let M =


0 −m21 m13

m21 0 −m32

−m13 m32 0

 be a skew-symmetric matrix in SO(3). Then, the

vee map [M]∨ can be defined as a mathematical operator SO(3)→ R3:

[M]∨ =
[
m32 m13 m21

]T
. (B.3)

The vee map is the inverse of the hat map, i.e.,
[
[v]∧

]∨
= v. On the other side, the

hat map is the inverse of the vee map, i.e.,
[
[M]∨

]∧
= M.

163

List of Author’s Publications

Journal Articles

[1] A. Sarabakha, N. Imanberdiyev, E. Kayacan, M. A. Khanesar, and H. Ha-

gras, “Novel Levenberg–Marquardt Based Learning Algorithm for Unmanned

Aerial Vehicles,” Information Sciences, vol. 417, pp. 361–380, Nov. 2017.

doi:10.1016/j.ins.2017.07.020

[2] C. Fu, A. Sarabakha, E. Kayacan, C. Wagner, R. John, and J. M.

Garibaldi, “Input Uncertainty Sensitivity Enhanced Nonsingleton Fuzzy Logic

Controllers for Long-Term Navigation of Quadrotor UAVs,” IEEE/ASME

Transactions on Mechatronics, vol. 23, no. 2, pp. 725–734, Apr. 2018.

doi:10.1109/TMECH.2018.2810947

[3] E. Kayacan, A. Sarabakha, S. Coupland, R. John, M. A. Khanesar, “Type-2

Fuzzy Elliptic Membership Functions for Modeling Uncertainty,” Engineer-

ing Applications of Artificial Intelligence, vol. 70, pp. 170–183, Apr. 2018.

doi:10.1016/j.engappai.2018.02.004

[4] A. Sarabakha, C. Fu, E. Kayacan, and T. Kumbasar, “Type-2 Fuzzy Logic

Controllers Made Even Simpler: From Design to Deployment for UAVs,”

IEEE Transactions on Industrial Electronics, vol. 65, no. 6, pp. 5069–5077,

June 2018. doi:10.1109/TIE.2017.2767546

[5] S. Patel, A. Sarabakha, D. Kircali, and E. Kayacan, “An Intelligent

Hybrid Artificial Neural Network-Based Approach for Control of Aerial

Robots,” Journal of Intelligent & Robotic Systems, pp. 1–12, May 2019.

doi:10.1007/s10846-019-01031-z

165

https://doi.org/10.1016/j.ins.2017.07.020
https://doi.org/10.1109/TMECH.2018.2810947
https://doi.org/10.1016/j.engappai.2018.02.004
https://doi.org/10.1109/TIE.2017.2767546
https://doi.org/10.1007/s10846-019-01031-z

166 List of Author’s Publications

[6] A. Sarabakha, C. Fu, and E. Kayacan, “Intuit Before Tuning: Type-1 and

Type-2 Fuzzy Logic Controllers,” Applied Soft Computing, vol. 81, pp. 105495,

Aug. 2019. doi:10.1016/j.asoc.2019.105495

[7] A. Sarabakha, and E. Kayacan, “Online Deep Fuzzy Learning for Control

of Nonlinear Systems Using Expert Knowledge,” IEEE Transactions on Fuzzy

Systems. doi:10.1109/TFUZZ.2019.2936787

Conference Proceedings

[1] C. Fu, A. Sarabakha, E. Kayacan, C. Wagner, R. John, and J. M. Garibaldi,

“A Comparative Study on the Control of Quadcopter UAVs by Using Sin-

gleton and Non-Singleton Fuzzy Logic Controllers,” in 2016 IEEE Interna-

tional Conference on Fuzzy Systems (FUZZ-IEEE), Vancouver, Canada, 2016,

pp. 1023–1030. doi:10.1109/FUZZ-IEEE.2016.7737800

[2] A. Sarabakha and E. Kayacan, “Y6 Tricopter Autonomous Evacuation

in an Indoor Environment Using Q-Learning Algorithm,” in 2016 IEEE

55th Conference on Decision and Control (CDC), Las Vegas, USA, 2016,

pp. 5992–5997. doi:10.1109/CDC.2016.7799189

[3] A. Sarabakha, C. Fu, and E. Kayacan, “Double-Input Interval Type-2

Fuzzy Logic Controllers: Analysis and Design,” in 2017 IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE), Naples, Italy, 2017, pp. 1–6.

doi:10.1109/FUZZ-IEEE.2017.8015485

[4] C. Fu, A. Sarabakha, E. Kayacan, C. Wagner, R. John, and J. M. Garibaldi,

“Novel, Similarity-Based Non-Singleton Fuzzy Logic Control for Improved

Uncertainty Handling in Quadrotor UAVs,” in 2017 IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE), Naples, Italy, 2017, pp. 1–6.

doi:10.1109/FUZZ-IEEE.2017.8015440

[5] A. Sarabakha, and E. Kayacan, “Online Deep Learning for Improved Tra-

jectory Tracking of Unmanned Aerial Vehicles Using Expert Knowledge,” in

2019 IEEE International Conference on Robotics and Automation (ICRA),

Montreal, Canada, 2019, pp. 7727–7733. doi:10.1109/ICRA.2019.8794314

https://doi.org/10.1016/j.asoc.2019.105495
https://doi.org/10.1109/TFUZZ.2019.2936787
https://doi.org/10.1109/FUZZ-IEEE.2016.7737800
https://doi.org/10.1109/CDC.2016.7799189
https://doi.org/10.1109/FUZZ-IEEE.2017.8015485
https://doi.org/10.1109/FUZZ-IEEE.2017.8015440
https://doi.org/10.1109/ICRA.2019.8794314

List of Author’s Publications 167

[6] S. Zhou, A. Sarabakha, E. Kayacan, M. K. Helwa, and A. P. Schoel-

lig, “Knowledge Transfer Between Robots with Similar Dynamics for High-

Accuracy Impromptu Trajectory Tracking,” in 2019 European Control Confer-

ence (ECC), Naples, Italy, 2019, pp. 1–8. doi:10.23919/ECC.2019.8796140

[7] S. Patel, A. Sarabakha, D. Kircali, G. Loianno, and E. Kayacan,

“Artificial Neural Network-Assisted Controller for Fast and Agile UAV

Flight: Onboard Implementation and Experimental Results,” in 2019 In-

ternational Workshop on Research, Education and Development on Un-

manned Aerial Systems (RED-UAS), Cranfield, UK, 2019, pp. 37–43.

doi:10.1109/REDUAS47371.2019.8999677

https://doi.org/10.23919/ECC.2019.8796140
https://doi.org/10.1109/REDUAS47371.2019.8999677

Bibliography

[1] Chowdhary Vinayak G., Frazzoli E., How P. J., and Liu H. Nonlinear flight con-

trol techniques for unmanned aerial vehicles, pages 577–612. Springer Nether-

lands, January 2015. ISBN 2014944662. doi: 10.1007/978-90-481-9707-1 87.

3

[2] P. Cintula, C. G. Fermüller, and C. Noguera. Fuzzy Logic. In Edward N.

Zalta, editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research

Lab, Stanford University, fall 2017 edition, 2017. 4, 33

[3] D. Wu. On the Fundamental Differences Between Interval Type-2 and Type-1

Fuzzy Logic Controllers. IEEE Transactions on Fuzzy Systems, 20(5):832–848,

Oct 2012. ISSN 1063-6706. doi: 10.1109/TFUZZ.2012.2186818. 4, 8, 33

[4] A. K. Ravandi, E. Khanmirza, and K. Daneshjou. Hybrid force/position

control of robotic arms manipulating in uncertain environments based on

adaptive fuzzy sliding mode control. Applied Soft Computing, 70:864 – 874,

2018. ISSN 1568-4946. doi: 10.1016/j.asoc.2018.05.048. 4, 49

[5] E. Ontiveros, P. Melin, and O. Castillo. High order α-planes integration:

A new approach to computational cost reduction of General Type-2 Fuzzy

Systems. Engineering Applications of Artificial Intelligence, 74:186 – 197,

2018. ISSN 0952-1976. doi: 10.1016/j.engappai.2018.06.013. 4

[6] E. Kayacan, A. Sarabakha, S. Coupland, R. John, and M. A. Khanesar. Type-

2 fuzzy elliptic membership functions for modeling uncertainty. Engineering

Applications of Artificial Intelligence, 70:170 – 183, 2018. ISSN 0952-1976.

doi: 10.1016/j.engappai.2018.02.004. 4, 49, 146, 150

[7] D. Wu and J. M. Mendel. Uncertainty measures for interval type-2 fuzzy

sets. Information Sciences, 177(23):5378 – 5393, 2007. ISSN 0020-0255. doi:

10.1016/j.ins.2007.07.012. Including: Mathematics of Uncertainty. 4, 49

169

170 BIBLIOGRAPHY

[8] D. K. Jana and R. Ghosh. Novel interval type-2 fuzzy logic controller for

improving risk assessment model of cyber security. Journal of Information

Security and Applications, 40:173 – 182, 2018. ISSN 2214-2126. doi: 10.1016/

j.jisa.2018.04.002. 4, 49

[9] S. Pramanik, D. K. Jana, S. K. Mondal, and M. Maiti. A fixed-charge

transportation problem in two-stage supply chain network in gaussian type-

2 fuzzy environments. Information Sciences, 325:190 – 214, 2015. ISSN

0020-0255. doi: 10.1016/j.ins.2015.07.012. 4, 49

[10] O. Castillo and P. Melin. A review on interval type-2 fuzzy logic applications

in intelligent control. Information Sciences, 279:615 – 631, 2014. ISSN

0020-0255. doi: 10.1016/j.ins.2014.04.015. 4, 49

[11] O. Linda and M. Manic. Uncertainty-Robust Design of Interval Type-2 Fuzzy

Logic Controller for Delta Parallel Robot. IEEE Transactions on Industrial

Informatics, 7(4):661–670, Nov 2011. ISSN 1551-3203. doi: 10.1109/TII.2011.

2166786. 4, 49

[12] A. Sarabakha, C. Fu, E. Kayacan, and T. Kumbasar. Type-2 Fuzzy Logic

Controllers Made Even Simpler: From Design to Deployment for UAVs. IEEE

Transactions on Industrial Electronics, 65(6):5069–5077, June 2018. ISSN

0278-0046. doi: 10.1109/TIE.2017.2767546. 4, 59

[13] S. Jothilakshmi and V.N. Gudivada. Chapter 10 - Large Scale Data Enabled

Evolution of Spoken Language Research and Applications. In V. N. Gudivada,

V. V. Raghavan, V. Govindaraju, and C. R. Rao, editors, Cognitive Computing:

Theory and Applications, volume 35 of Handbook of Statistics, pages 301 –

340. Elsevier, 2016. doi: 10.1016/bs.host.2016.07.005. 4, 83

[14] W. Mao and F.-Y. Wang. Chapter 8 - Cultural Modeling for Behavior Analysis

and Prediction. In W. Mao and F.-Y. Wang, editors, New Advances in

Intelligence and Security Informatics, pages 91 – 102. Academic Press, Boston,

2012. ISBN 978-0-12-397200-2. doi: 10.1016/B978-0-12-397200-2.00008-7. 4,

83

[15] U. Porwal, Z. Shi, and S. Setlur. Chapter 18 - Machine Learning in Hand-

written Arabic Text Recognition. In C. R. Rao and V. Govindaraju, editors,

BIBLIOGRAPHY 171

Handbook of Statistics, volume 31 of Handbook of Statistics, pages 443 – 469.

Elsevier, 2013. doi: 10.1016/B978-0-444-53859-8.00018-7. 5, 83

[16] Y. Roh, G. Heo, and S. E. Whang. A Survey on Data Collection for Machine

Learning: a Big Data – AI Integration Perspective, 2018. 5, 83

[17] E. Conrad, S. Misenar, and J. Feldman. Chapter 9 - Domain 8: Software

Development Security (Understanding, Applying, and Enforcing Software

Security). In E. Conrad, S. Misenar, and J. Feldman, editors, CISSP Study

Guide (Third Edition), pages 429 – 477. Syngress, Boston, third edition edition,

2016. ISBN 978-0-12-802437-9. doi: 10.1016/B978-0-12-802437-9.00009-6. 5,

83, 119

[18] E. Kayacan, E. Kayacan, H. Ramon, and W. Saeys. Adaptive Neuro-Fuzzy

Control of a Spherical Rolling Robot Using Sliding-Mode-Control-Theory-

Based Online Learning Algorithm. IEEE Transactions on Cybernetics, 43(1):

170–179, Feb 2013. ISSN 2168-2267. doi: 10.1109/TSMCB.2012.2202900. 5,

83

[19] F. Ornelas-Tellez, J. J. Rico-Melgoza, A. E. Villafuerte, and F. J. Zavala-

Mendoza. Chapter 3 - Neural Networks: A Methodology for Modeling and

Control Design of Dynamical Systems. In A. Y. Alanis, N. Arana-Daniel,

and C. Lopez-Franco, editors, Artificial Neural Networks for Engineering

Applications, pages 21 – 38. Academic Press, 2019. ISBN 978-0-12-818247-5.

doi: 10.1016/B978-0-12-818247-5.00012-5. 5

[20] Y. LeCun, Y. Bengio, and G. Hinton. Deep Learning. Nature, 521:436–444,

May 2015. 5, 101

[21] X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and

A. Ozcan. All-optical machine learning using diffractive deep neural networks.

Science, 361(6406):1004–1008, 2018. ISSN 0036-8075. doi: 10.1126/science.

aat8084. 5

[22] M. Bianchini and F. Scarselli. On the Complexity of Neural Network Classifiers:

A Comparison Between Shallow and Deep Architectures. IEEE Transactions

on Neural Networks and Learning Systems, 25(8):1553–1565, Aug 2014. doi:

10.1109/TNNLS.2013.2293637. 5, 101

172 BIBLIOGRAPHY

[23] S. Zhou, M. K. Helwa, and A. P. Schoellig. An Inversion-Based Learning

Approach for Improving Impromptu Trajectory Tracking of Robots With

Non-Minimum Phase Dynamics. IEEE Robotics and Automation Letters, 3

(3):1663–1670, July 2018. ISSN 2377-3766. doi: 10.1109/LRA.2018.2801471.

5, 101

[24] A. Loquercio, A. I. Maqueda, C. R. del Blanco, and D. Scaramuzza. DroNet:

Learning to Fly by Driving. IEEE Robotics and Automation Letters, 3(2):

1088–1095, April 2018. 5, 101

[25] A. Celikyilmaz and I. B. Turksen. Modeling Uncertainty with Fuzzy

Logic: With Recent Theory and Applications. Springer-Verlag Berlin

Heidelberg, 1st edition, 2009. ISBN 3540899235, 9783540899235. doi:

10.1007/978-3-540-89924-2. 5, 6, 119

[26] F. Behrooz, N. Mariun, M. Marhaban, M. A. Mohd Radzi, and A. Ramli.

Review of Control Techniques for HVAC Systems—Nonlinearity Approaches

Based on Fuzzy Cognitive Maps. Energies, 11:495, 02 2018. doi: 10.3390/

en11030495. 5, 119, 135

[27] T. Roxlo and M. Reece. Opening the black box of neural nets: case studies

in stop/top discrimination, 2018. 5, 119

[28] F. Gaxiola, P. Melin, F. Valdez, and O. Castillo. Generalized type-2 fuzzy

weight adjustment for backpropagation neural networks in time series pre-

diction. Information Sciences, 325:159 – 174, 2015. ISSN 0020-0255. doi:

10.1016/j.ins.2015.07.020. 5, 119

[29] N. Wang, M. J. Er, and M. Han. Dynamic Tanker Steering Control Using

Generalized Ellipsoidal-Basis-Function-Based Fuzzy Neural Networks. IEEE

Transactions on Fuzzy Systems, 23(5):1414–1427, Oct 2015. doi: 10.1109/

TFUZZ.2014.2362144. 5, 119

[30] D. Jirak and S. Wermter. Potentials and Limitations of Deep Neural Networks

for Cognitive Robots, 2018. 5, 135

[31] T. Zhou, F. Chung, and S. Wang. Deep TSK Fuzzy Classifier With Stacked

Generalization and Triplely Concise Interpretability Guarantee for Large

Data. IEEE Transactions on Fuzzy Systems, 25(5):1207–1221, Oct 2017.

ISSN 1063-6706. 5, 135

BIBLIOGRAPHY 173

[32] A. Sarabakha and E. Kayacan. Y6 Tricopter Autonomous Evacuation in

an Indoor Environment Using Q-Learning Algorithm. In 2016 IEEE 55th

Conference on Decision and Control (CDC), pages 5992–5997, Dec 2016. doi:

10.1109/CDC.2016.7799189. 6, 28

[33] H. Zhou, H. Kong, L. Wei, D. Creighton, and S. Nahavandi. Efficient Road

Detection and Tracking for Unmanned Aerial Vehicle. IEEE Transactions on

Intelligent Transportation Systems, 16(1):297–309, 2015. 6

[34] C. Fu, A. Carrio, M. A. Olivares-Mendez, R. Suarez-Fernandez, and P. Campoy.

Robust Real-Time Vision-Based Aircraft Tracking from Unmanned Aerial

Vehicles. In 2014 IEEE International Conference on Robotics and Automation

(ICRA), pages 5441–5446, May 2014. doi: 10.1109/ICRA.2014.6907659. 6

[35] J. Valente, D. Sanz, A. Barrientos, J. Del Cerro, A. Ribeiro, and C. Rossi.

An Air-Ground Wireless Sensor Network for Crop Monitoring. Sensors, 11

(6):6088–6108, 2011. 6

[36] C. Fu, A. Carrio, and P. Campoy. Efficient visual odometry and mapping

for Unmanned Aerial Vehicle using ARM-based stereo vision pre-processing

system. In 2015 International Conference on Unmanned Aircraft Systems

(ICUAS), pages 957–962, June 2015. doi: 10.1109/ICUAS.2015.7152384. 6

[37] H. Alzu’bi, B. H. Sababha, and B. Alkhatib. Model-Based Control of a Fully

Autonomous Quadrotor UAV. 08 2013. doi: 10.2514/6.2013-5136. 6

[38] Y. A. Younes, A. Drak, H. Noura, A. Rabhi, and A. E. Hajjaji. Robust

Model-Free Control Applied to a Quadrotor UAV. Journal of Intelligent

& Robotic Systems, 84(1):37–52, Dec 2016. ISSN 1573-0409. doi: 10.1007/

s10846-016-0351-2. 6

[39] A. Eresen, N. Imamoglu, and M. O. Efe. Autonomous Quadrotor Flight with

Vision-Based Obstacle Avoidance in Virtual Environment. Expert Systems

with Applications, 39(1):894 – 905, 2012. ISSN 0957-4174. 6

[40] M. D. Hua, T. Hamel, P. Morin, and C. Samson. Introduction to feedback

control of underactuated VTOLvehicles: A review of basic control design

ideas and principles. IEEE Control Systems, 33(1):61–75, Feb 2013. ISSN

1066-033X. doi: 10.1109/MCS.2012.2225931. 6

174 BIBLIOGRAPHY

[41] Y. Dong, F. Jun, Y. Bin, Z. Youmin, and A. Jianliang. Position and Heading

Angle Control of an Unmanned Quadrotor Helicopter Using LQR Method. In

Control Conference (CCC), 2015 34th Chinese, pages 5566–5571, July 2015.

doi: 10.1109/ChiCC.2015.7260508. 6

[42] M. Hofer, M. Muehlebach, and R. D’Andrea. Application of an approximate

model predictive control scheme on an unmanned aerial vehicle. In 2016

IEEE International Conference on Robotics and Automation (ICRA), pages

2952–2957, 2016. 6

[43] E. Kayacan and R. Maslim. Type-2 Fuzzy Logic Trajectory Tracking Control of

Quadrotor VTOL Aircraft With Elliptic Membership Functions. IEEE/ASME

Transactions on Mechatronics, (99):1, 2016. 6

[44] M. Mehndiratta, E. Kayacan, and T. Kumbasar. Design and experimental

validation of single input type-2 fuzzy PID controllers as applied to 3 DOF

helicopter testbed. In 2016 IEEE International Conference on Fuzzy Systems

(FUZZ-IEEE), pages 1584–1591, 2016.

[45] C. J. Kim and D. Chwa. Obstacle Avoidance Method for Wheeled Mobile

Robots Using Interval Type-2 Fuzzy Neural Network. IEEE Transactions

on Fuzzy Systems, 23(3):677–687, June 2015. ISSN 1063-6706. doi: 10.1109/

TFUZZ.2014.2321771. 6

[46] F. Cuevas, O. Castillo, and P. Cortes-Antonio. Towards an Adaptive Control

Strategy Based on Type-2 Fuzzy Logic for Autonomous Mobile Robots. In

2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pages

1–6, June 2019. doi: 10.1109/FUZZ-IEEE.2019.8858801. 6

[47] H. Hagras. A hierarchical type-2 fuzzy logic control architecture for au-

tonomous mobile robots. IEEE Transactions on Fuzzy Systems, 12(4):524–539,

Aug 2004. 6

[48] F. Fakurian, M. B. Menhaj, and A. Mohammadi. Design of a fuzzy controller

by minimum controlling inputs for a quadrotor. In 2014 Second RSI/ISM

International Conference on Robotics and Mechatronics (ICRoM), pages 619–

624, 2014. 6

[49] G. K. I. Mann, Bao-Gang Hu, and R. G. Gosine. Analysis of direct action

fuzzy PID controller structures. IEEE Transactions on Systems, Man, and

BIBLIOGRAPHY 175

Cybernetics, Part B (Cybernetics), 29(3):371–388, June 1999. ISSN 1083-4419.

doi: 10.1109/3477.764871. 6

[50] H. X. Li and H. B. Gatland. Conventional fuzzy control and its enhancement.

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),

26(5):791–797, Oct 1996. ISSN 1083-4419. doi: 10.1109/3477.537321. 6

[51] H. X. Li, H. B. Gatland, and A. W. Green. Fuzzy variable structure control.

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),

27(2):306–312, April 1997. ISSN 1083-4419. doi: 10.1109/3477.558824. 6

[52] J. Carvajal, G. Chen, and H. Ogmen. Fuzzy PID controller: Design, perfor-

mance evaluation, and stability analysis. Information Sciences, 123(3):249 –

270, 2000. ISSN 0020-0255. doi: 10.1016/S0020-0255(99)00127-9. 6

[53] B.-G. Hu, G. K. I. Mann, and R. G. Gosine. A systematic study of fuzzy PID

controllers-function-based evaluation approach. IEEE Transactions on Fuzzy

Systems, 9(5):699–712, Oct 2001. ISSN 1063-6706. doi: 10.1109/91.963756. 7

[54] H. Ying. Deriving Analytical Input–Output Relationship for Fuzzy Controllers

Using Arbitrary Input Fuzzy Sets and Zadeh Fuzzy AND Operator. IEEE

Transactions on Fuzzy Systems, 14(5):654–662, Oct 2006. ISSN 1063-6706.

doi: 10.1109/TFUZZ.2006.877355. 7

[55] B. M. Mohan and A. Sinha. Analytical structure and stability analysis of a

fuzzy PID controller. Applied Soft Computing, 8(1):749 – 758, 2008. ISSN

1568-4946. doi: 10.1016/j.asoc.2007.06.003. 7

[56] P. S. Londhe, B. M. Patre, and A. P. Tiwari. Design of Single-Input Fuzzy

Logic Controller for Spatial Control of Advanced Heavy Water Reactor. IEEE

Transactions on Nuclear Science, 61(2):901–911, April 2014. 7

[57] C. Fu, M. A. Olivares-Mendez, R. Suarez-Fernandez, and P. Campoy. Monoc-

ular Visual-Inertial SLAM-Based Collision Avoidance Strategy for Fail-Safe

UAV Using Fuzzy Logic Controllers. Journal of Intelligent & Robotic Systems,

73(1-4):513–533, 2014.

[58] M. A. Olivares-Mendez, C. Fu, S. Kannan, H. Voos, and P. Campoy. Using the

Cross-Entropy method for control optimization: A case study of see-and-avoid

176 BIBLIOGRAPHY

on unmanned aerial vehicles. In 22nd Mediterranean Conference on Control

and Automation, pages 1183–1189, 2014. 7

[59] A.B. Cara, I. Rojas, H. Pomares, C. Wagner, and H. Hagras. On comparing

non-singleton type-1 and singleton type-2 fuzzy controllers for a nonlinear

servo system. In Advances in Type-2 Fuzzy Logic Systems (T2FUZZ), 2011

IEEE Symposium on, pages 126–133, 2011. 7

[60] J. Bharali and M. Buragohain. A comparative analysis of PID, LQR and

Fuzzy logic controller for active suspension system using 3 Degree of Freedom

quarter car model. In 2016 IEEE 1st International Conference on Power

Electronics, Intelligent Control and Energy Systems (ICPEICES), pages 1–5,

July 2016. doi: 10.1109/ICPEICES.2016.7853152. 7

[61] C. Fu, A. Sarabakha, E. Kayacan, C. Wagner, R. John, and J. M. Garibaldi. A

comparative study on the control of quadcopter UAVs by using singleton and

non-singleton fuzzy logic controllers. In 2016 IEEE International Conference

on Fuzzy Systems (FUZZ-IEEE), pages 1023–1030, July 2016. 7

[62] A. Pourabdollah, C. Wagner, J. H. Aladi, and J. M. Garibaldi. Improved

Uncertainty Capture for Nonsingleton Fuzzy Systems. IEEE Transactions on

Fuzzy Systems, 24(6):1513–1524, Dec 2016. ISSN 1063-6706. doi: 10.1109/

TFUZZ.2016.2540065. 7, 39

[63] C. Wagner, A. Pourabdollah, J. McCulloch, R. John, and J. M. Garibaldi.

A similarity-based inference engine for non-singleton fuzzy logic systems. In

2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pages

316–323, July 2016. 39, 41

[64] A. Pourabdollah, C. Wagner, and J. Aladi. Changes under the hood - a new

type of non-singleton fuzzy logic system. In Fuzzy Systems (FUZZ-IEEE),

2015 IEEE International Conference on, pages 1–8, 2015. 7

[65] P. Melin and O. Castillo. A review on type-2 fuzzy logic applications in

clustering, classification and pattern recognition. Applied Soft Computing, 21:

568 – 577, 2014. ISSN 1568-4946. doi: 10.1016/j.asoc.2014.04.017. 7, 49

[66] S. Greenfield, F. Chiclana, R. John, and S. Coupland. The sampling method

of defuzzification for type-2 fuzzy sets: Experimental evaluation. Information

Sciences, 189:77 – 92, 2012. ISSN 0020-0255. doi: 10.1016/j.ins.2011.11.042.

BIBLIOGRAPHY 177

[67] O. Castillo and P. Melin. 3 Type-2 Fuzzy Logic, pages 29–43. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2008. 7

[68] O. Castillo, L. Amador-Angulo, J. R. Castro, and M. Garcia-Valdez. A com-

parative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems

and generalized type-2 fuzzy logic systems in control problems. Information

Sciences, 354:257 – 274, 2016. ISSN 0020-0255. doi: 10.1016/j.ins.2016.03.026.

7

[69] J. M. Mendel and R. I. B. John. Type-2 fuzzy sets made simple. IEEE

Transactions on Fuzzy Systems, 10(2):117–127, Apr 2002. ISSN 1063-6706.

doi: 10.1109/91.995115. 7

[70] A. K. Das, S. Sundaram, and N. Sundararajan. A self-regulated interval

type-2 neuro-fuzzy inference system for handling non-stationarities in EEG

signals for BCI. IEEE Transactions on Fuzzy Systems, PP(99):1–1, 2016.

ISSN 1063-6706. doi: 10.1109/TFUZZ.2016.2540072. 7

[71] F. Baghbani, M.-R. Akbarzadeh-T., Alireza Akbarzadeh, and M. Ghaemi.

Robust adaptive mixed H2/H∞ interval type-2 fuzzy control of nonlinear

uncertain systems with minimal control effort. Engineering Applications of

Artificial Intelligence, 49:88–102, 2016.

[72] Saugat Bhattacharyya, Debabrota Basu, Amit Konar, and D.N. Tibarewala.

Interval type-2 fuzzy logic based multiclass ANFIS algorithm for real-time

EEG based movement control of a robot arm. Robotics and Autonomous

Systems, 68:104 – 115, 2015. ISSN 0921-8890. doi: 10.1016/j.robot.2015.01.

007.

[73] A. Mohammadzadeh, O. Kaynak, and M. Teshnehlab. Two-mode Indirect

Adaptive Control Approach for the Synchronization of Uncertain Chaotic

Systems by the Use of a Hierarchical Interval Type-2 Fuzzy Neural Network.

IEEE Transactions on Fuzzy Systems, 22(5):1301–1312, Oct 2014. ISSN

1063-6706. doi: 10.1109/TFUZZ.2013.2291568. 7

[74] J. M. Mendel and X. Liu. Simplified Interval Type-2 Fuzzy Logic Systems.

IEEE Transactions on Fuzzy Systems, 21(6):1056–1069, Dec 2013. ISSN

1063-6706. doi: 10.1109/TFUZZ.2013.2241771. 7, 49

178 BIBLIOGRAPHY

[75] Tufan Kumbasar. A simple design method for interval type-2 fuzzy PID

controllers. Soft Computing, 18(7):1293–1304, 2014. ISSN 1433-7479. doi:

10.1007/s00500-013-1144-1. 7

[76] D. Wu and J. M. Mendel. On the Continuity of Type-1 and Interval Type-2

Fuzzy Logic Systems. IEEE Transactions on Fuzzy Systems, 19(1):179–192,

Feb 2011. ISSN 1063-6706. doi: 10.1109/TFUZZ.2010.2091962. 7, 8

[77] M. Nie and W. W. Tan. Analytical Structure and Characteristics of Symmetric

Karnik–Mendel Type-Reduced Interval Type-2 Fuzzy PI and PD Controllers.

IEEE Transactions on Fuzzy Systems, 20(3):416–430, June 2012. ISSN 1063-

6706. doi: 10.1109/TFUZZ.2011.2174061. 7

[78] X. Du and H. Ying. Derivation and Analysis of the Analytical Structures

of the Interval Type-2 Fuzzy-PI and PD Controllers. IEEE Transactions on

Fuzzy Systems, 18(4):802–814, Aug 2010. ISSN 1063-6706. doi: 10.1109/

TFUZZ.2010.2049022. 7, 8

[79] H. Zhou and H. Ying. A Method for Deriving the Analytical Structure of a

Broad Class of Typical Interval Type-2 Mamdani Fuzzy Controllers. IEEE

Transactions on Fuzzy Systems, 21(3):447–458, June 2013. ISSN 1063-6706.

doi: 10.1109/TFUZZ.2012.2226891. 8

[80] M. F. Dodurka, T. Kumbasar, A. Sakalli, and E. Yesil. Boundary function

based Karnik-Mendel type reduction method for Interval Type-2 Fuzzy PID

controllers. In 2014 IEEE International Conference on Fuzzy Systems (FUZZ-

IEEE), pages 619–625, July 2014. doi: 10.1109/FUZZ-IEEE.2014.6891832.

8

[81] A. Sakalli, T. Kumbasar, M. F. Dodurka, and E. Yesil. The simplest interval

type-2 fuzzy PID controller: Structural analysis. In 2014 IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE), pages 626–633, July 2014. doi:

10.1109/FUZZ-IEEE.2014.6891830. 8

[82] H. Zhou and H. Ying. Deriving and Analyzing Analytical Structures of a

Class of Typical Interval Type-2 TS Fuzzy Controllers. IEEE Transactions

on Cybernetics, 47(9):2492–2503, Sept 2017. ISSN 2168-2267. doi: 10.1109/

TCYB.2016.2570239. 8

BIBLIOGRAPHY 179

[83] C. M. T. Yip, W. W. Tan, and M. Nie. On the difference in control performance

of interval type-2 fuzzy PI control system with different FOU shapes. Applied

Soft Computing, 76:517 – 532, 2019. ISSN 1568-4946. doi: 10.1016/j.asoc.

2018.12.039. 8

[84] A. Sarabakha, C. Fu, and E. Kayacan. Double-Input Interval Type-2

Fuzzy Logic Controllers: Analysis and Design. In 2017 IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE), pages 1–6, July 2017. doi:

10.1109/FUZZ-IEEE.2017.8015485. 8, 59

[85] B. J. Emran and H. Najjaran. Adaptive neural network control of quadrotor

system under the presence of actuator constraints. In 2017 IEEE International

Conference on Systems, Man, and Cybernetics (SMC), pages 2619–2624, Oct

2017. 8

[86] S. Bansal, A. K. Akametalu, F. J. Jiang, F. Laine, and C. J. Tomlin. Learning

quadrotor dynamics using neural network for flight control. In 2016 IEEE

55th Conference on Decision and Control (CDC), pages 4653–4660, Dec 2016.

8

[87] S. A. Nivison and P. P. Khargonekar. Development of a robust deep recurrent

neural network controller for flight applications. In 2017 American Control

Conference (ACC), pages 5336–5342, May 2017. 8

[88] A. Punjani and P. Abbeel. Deep learning helicopter dynamics models. In

2015 IEEE International Conference on Robotics and Automation (ICRA),

pages 3223–3230, May 2015. 8

[89] N. Mohajerin and S. L. Waslander. Modular Deep Recurrent Neural Net-

work: Application to Quadrotors. In 2014 IEEE International Conference on

Systems, Man, and Cybernetics (SMC), pages 1374–1379, Oct 2014. 8

[90] Q. Li, J. Qian, Z. Zhu, X. Bao, M. K. Helwa, and A. P. Schoellig. Deep neural

networks for improved, impromptu trajectory tracking of quadrotors. In 2017

IEEE International Conference on Robotics and Automation (ICRA), pages

5183–5189, May 2017. 8

[91] M. Pratama, J. Lu, E. Lughofer, G. Zhang, and M. J. Er. An Incremental

Learning of Concept Drifts Using Evolving Type-2 Recurrent Fuzzy Neural

180 BIBLIOGRAPHY

Networks. IEEE Transactions on Fuzzy Systems, 25(5):1175–1192, Oct 2017.

ISSN 1063-6706. 8, 135

[92] S. Zhou, Q. Chen, and X. Wang. Fuzzy deep belief networks for semi-

supervised sentiment classification. Neurocomputing, 131:312–322, 2014. ISSN

0925-2312. 8

[93] A. Sarabakha, N. Imanberdiyev, E. Kayacan, M. A. Khanesar, and H. Hagras.

Novel Levenberg–Marquardt Based Learning Algorithm for Unmanned Aerial

Vehicles. Information Sciences, 417:361 – 380, 2017. ISSN 0020-0255. doi:

10.1016/j.ins.2017.07.020. 8, 86

[94] Y. Deng, Z. Ren, Y. Kong, F. Bao, and Q. Dai. A Hierarchical Fused Fuzzy

Deep Neural Network for Data Classification. IEEE Transactions on Fuzzy

Systems, 25(4):1006–1012, Aug 2017. ISSN 1063-6706. 8, 135

[95] J. Fernández de Cañete, C. Galindo, and I. G. Moral. Introduction to Systems,

pages 1–11. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. ISBN

978-3-642-20230-8. doi: 10.1007/978-3-642-20230-8 1. 13

[96] J. Fernández de Cañete, C. Galindo, and I. G. Moral. System Description,

pages 43–83. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. ISBN

978-3-642-20230-8. doi: 10.1007/978-3-642-20230-8 3. 13

[97] G. Boeing. Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals,

Self-Similarity and the Limits of Prediction. Systems, 4(4), 2016. ISSN

2079-8954. doi: 10.3390/systems4040037. 13

[98] A. Isidori. Elementary Theory of Nonlinear Feedback for Multi-Input Multi-

Output Systems, pages 219–291. Springer London, London, 1995. 14

[99] A. Isidori. The zero dynamics of a nonlinear system: From the origin to the

latest progresses of a long successful story. European Journal of Control, 19

(5):369–378, 2013. ISSN 0947-3580. The Path of Control. 14

[100] D. Liberzon, A. S. Morse, and E. D. Sontag. Output-input stability and

minimum-phase nonlinear systems. IEEE Transactions on Automatic Control,

47(3):422–436, March 2002. ISSN 0018-9286. doi: 10.1109/9.989070. 14

BIBLIOGRAPHY 181

[101] J. P. Hespanha, D. Liberzon, D. Angeli, and E. D. Sontag. Nonlinear norm-

observability notions and stability of switched systems. IEEE Transactions

on Automatic Control, 50(2):154–168, Feb 2005. ISSN 0018-9286. 14

[102] S. Zhou, M. K. Helwa, and A. P. Schoellig. Design of deep neural networks as

add-on blocks for improving impromptu trajectory tracking. In 2017 IEEE

56th Annual Conference on Decision and Control (CDC), pages 5201–5207,

Dec 2017. doi: 10.1109/CDC.2017.8264430. 15, 103, 105

[103] S. Zhou, A. Sarabakha, E. Kayacan, M. K. Helwa, and A. P. Schoellig.

Knowledge Transfer Between Robots with Similar Dynamics for High-Accuracy

Impromptu Trajectory Tracking. In 2019 European Control Conference (ECC),

pages 1–8, June 2019. 15

[104] A. Kehlenbeck. Quaternion-based control for aggressive trajectory tracking

with a micro-quadrotor UAV. PhD thesis, University of Maryland, College

Park, 2014. 17

[105] G. Loianno, V. Spurny, J. Thomas, T. Baca, D. Thakur, D. Hert, R. Penicka,

T. Krajnik, A. Zhou, A. Cho, M. Saska, and V. Kumar. Localization, Grasping,

and Transportation of Magnetic Objects by a Team of MAVs in Challenging

Desert-Like Environments. IEEE Robotics and Automation Letters, 3(3):

1576–1583, July 2018. 17

[106] S. Siebert and J. Teizer. Mobile 3D mapping for surveying earthwork projects

using an Unmanned Aerial Vehicle (UAV) system. Automation in Construc-

tion, 41:1 – 14, 2014. ISSN 0926-5805. 17

[107] T. Tomic, K. Schmid, P. Lutz, A. Domel, M. Kassecker, E. Mair, I. L. Grixa,

F. Ruess, M. Suppa, and D. Burschka. Toward a Fully Autonomous UAV:

Research Platform for Indoor and Outdoor Urban Search and Rescue. IEEE

Robotics Automation Magazine, 19(3):46–56, Sept 2012. ISSN 1070-9932. 17

[108] S. Bouabdallah. Design and control of quadrotors with application to au-

tonomous flying. PhD thesis, EPFL, Dec 2007. 18

[109] V. Mistler, A. Benallegue, and N. K. M’Sirdi. Exact linearization and nonin-

teracting control of a 4 rotors helicopter via dynamic feedback. In Proceedings

10th IEEE International Workshop on Robot and Human Interactive Commu-

nication. ROMAN 2001 (Cat. No.01TH8591), pages 586–593, 2001. 19

182 BIBLIOGRAPHY

[110] T. Lee, M. Leok, and N. H. McClamroch. Nonlinear Robust Tracking Control

of a Quadrotor UAV on SE(3). Asian Journal of Control, 15(2):391–408, 2013.

ISSN 1934-6093. doi: 10.1002/asjc.567. 21

[111] R. Mahony, V. Kumar, and P. Corke. Multirotor Aerial Vehicles: Modeling,

Estimation, and Control of Quadrotor. IEEE Robotics Automation Magazine,

19(3):20–32, Sept 2012. ISSN 1070-9932. doi: 10.1109/MRA.2012.2206474.

22

[112] T. Lee, M. Leok, and N. H. McClamroch. Geometric tracking control of a

quadrotor UAV on SE(3). In 49th IEEE Conference on Decision and Control

(CDC), pages 5420–5425, Dec 2010. doi: 10.1109/CDC.2010.5717652. 29

[113] A. Sarabakha, C. Fu, and E. Kayacan. Intuit before tuning: Type-1 and

type-2 fuzzy logic controllers. Applied Soft Computing, 81:105495, 2019. ISSN

1568-4946. doi: 10.1016/j.asoc.2019.105495. 36

[114] C. Fu, A. Sarabakha, E. Kayacan, C. Wagner, R. John, and J. M. Garibaldi.

Similarity-Based Non-Singleton Fuzzy Logic Control for Improved Perfor-

mance in UAVs. In 2017 IEEE International Conference on Fuzzy Systems

(FUZZ-IEEE), pages 1–6, July 2017. doi: 10.1109/FUZZ-IEEE.2017.8015440.

36

[115] J.M. Mendel. Uncertain rule-based fuzzy logic system: introduction and new

directions. Upper Saddle River, NJ, USA, Prentice-Hall, 2001. 39, 60

[116] D. Mellinger and V. Kumar. Minimum Snap Trajectory Generation and

Control for Quadrotors. In Robotics and Automation (ICRA), 2011 IEEE

International Conference on, pages 2520–2525, May 2011. doi: 10.1109/ICRA.

2011.5980409. 42

[117] C. Fu, A. Sarabakha, E. Kayacan, C. Wagner, R. John, and J. M. Garibaldi.

Input Uncertainty Sensitivity Enhanced Nonsingleton Fuzzy Logic Controllers

for Long-Term Navigation of Quadrotor UAVs. IEEE/ASME Transactions

on Mechatronics, 23(2):725–734, April 2018. ISSN 1083-4435. doi: 10.1109/

TMECH.2018.2810947. 45, 150

[118] E. Ontiveros-Robles, P. Melin, and O. Castillo. Comparative analysis of noise

robustness of type 2 fuzzy logic controllers. Kybernetika, 54(1):175–201, 2018.

doi: 10.14736/kyb-2018-1-0175. 49

BIBLIOGRAPHY 183

[119] M. A. Khanesar, E. Kayacan, M. Teshnehlab, and O. Kaynak. Analysis

of the Noise Reduction Property of Type-2 Fuzzy Logic Systems Using a

Novel Type-2 Membership Function. IEEE Transactions on Systems, Man,

and Cybernetics, Part B (Cybernetics), 41(5):1395–1406, Oct 2011. ISSN

1083-4419. doi: 10.1109/TSMCB.2011.2148173. 49

[120] T. Kumbasar. Robust Stability Analysis and Systematic Design of Single-

Input Interval Type-2 Fuzzy Logic Controllers. IEEE Transactions on Fuzzy

Systems, 24(3):675–694, June 2016. ISSN 1063-6706. doi: 10.1109/TFUZZ.

2015.2471805. 51, 59

[121] G. Ruiz, H. Hagras, H. Pomares, I. Rojas, and H. Bustince. Join and Meet

Operations for Type-2 Fuzzy Sets With Nonconvex Secondary Memberships.

IEEE Transactions on Fuzzy Systems, 24(4):1000–1008, Aug 2016. doi: 10.

1109/TFUZZ.2015.2489242. 52

[122] J. Mendel, H. Hagras, W.-W. Tan, W. W. Melek, and H. Ying. Introduction to

Type-2 Fuzzy Logic Control: Theory and Applications. Wiley-IEEE Press, 1st

edition, 2014. ISBN 1118278399, 9781118278390. doi: 10.1002/9781118886540.

52

[123] N. N. Karnik and J. M. Mendel. Centroid of a type-2 fuzzy set. Information

Sciences, 132(1):195 – 220, 2001. ISSN 0020-0255. doi: 10.1016/S0020-0255(01)

00069-X. 52

[124] O. Castillo. Design of Stable Type-2 Fuzzy Logic Controllers, chapter 4,

pages 49–61. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN

978-3-642-24663-0. doi: 10.1007/978-3-642-24663-0 4. 59

[125] W. Pedrycz and F. Gomide. Notions and Concepts of Fuzzy Sets, chapter 2,

pages 27–44. Wiley-Blackwell, 2007. ISBN 9780470168967. doi: 10.1002/

9780470168967.ch2. 61

[126] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks

are universal approximators. Neural Networks, 2(5):359 – 366, 1989. ISSN

0893-6080. 84

[127] E. Johnson and S. Kannan. Adaptive flight control for an autonomous

unmanned helicopter. In AIAA Guidance, Navigation, and Control Conference

and Exhibit, page 4439, 2002. 84

184 BIBLIOGRAPHY

[128] G. Buskey, G. Wyeth, and J. Roberts. Autonomous helicopter hover using

an artificial neural network. In Proceedings 2001 ICRA. IEEE International

Conference on Robotics and Automation (Cat. No.01CH37164), volume 2,

pages 1635–1640 vol.2, 2001. 84

[129] Y. Yildiz, A. Sabanovic, and K. Abidi. Sliding-Mode Neuro-Controller for

Uncertain Systems. IEEE Transactions on Industrial Electronics, 54(3):

1676–1685, June 2007. ISSN 0278-0046. 85

[130] S. Patel, A. Sarabakha, D. Kircali, G. Loianno, and E. Kayacan. Artificial

Neural Network-Assisted Controller for Fast and Agile UAV Flight: Onboard

Implementation and Experimental Results. In 2019 Workshop on Research,

Education and Development of Unmanned Aerial Systems (RED UAS), pages

37–43, 2019. doi: 10.1109/REDUAS47371.2019.8999677. 86

[131] S. Patel, A. Sarabakha, D. Kircali, and E. Kayacan. An Intelligent Hybrid

Artificial Neural Network-Based Approach for Control of Aerial Robots.

Journal of Intelligent & Robotic Systems, May 2019. ISSN 1573-0409. doi:

10.1007/s10846-019-01031-z. 86

[132] E. Kayacan and M. A. Khanesar. Chapter 7 - Sliding Mode Control Theory-

Based Parameter Adaptation Rules for Fuzzy Neural Networks. In E. Kayacan

and M. A. Khanesar, editors, Fuzzy Neural Networks for Real Time Control

Applications, pages 85 – 131. Butterworth-Heinemann, 2016. ISBN 978-0-12-

802687-8. 87

[133] N. Imanberdiyev and E. Kayacan. A fast learning control strategy for un-

manned aerial manipulators. Journal of Intelligent & Robotic Systems, Jun

2018. ISSN 1573-0409. 87

[134] M. Önder Efe. Sliding Mode Control for Unmanned Aerial Vehicles Research,

pages 239–255. Springer International Publishing, Cham, 2015. ISBN 978-3-

319-18290-2. 87

[135] E. Kayacan and O. Kaynak. Sliding mode control theory-based algorithm

for online learning in type-2 fuzzy neural networks: application to velocity

control of an electro hydraulic servo system. International Journal of Adaptive

Control and Signal Processing, 26(7):645–659, 2012. doi: 10.1002/acs.1292. 87

BIBLIOGRAPHY 185

[136] L. Meier, D. Honegger, and M. Pollefeys. PX4: A node-based multithreaded

open source robotics framework for deeply embedded platforms. In 2015

IEEE International Conference on Robotics and Automation (ICRA), pages

6235–6240, May 2015. doi: 10.1109/ICRA.2015.7140074. 91

[137] L. Meier, P. Tanskanen, L. Heng, G. H. Lee, F. Fraundorfer, and M. Pollefeys.

PIXHAWK: A micro aerial vehicle design for autonomous flight using onboard

computer vision. Autonomous Robots, 33(1):21–39, Aug 2012. ISSN 1573-7527.

91

[138] B. Wilburn, M. Perhinschi, H. Moncayo, O. Karas, and J. Wilburn. Un-

manned aerial vehicle trajectory tracking algorithm comparison. Interna-

tional Journal of Intelligent Unmanned Systems, 1:276–302, 07 2013. doi:

10.1108/IJIUS-05-2013-0018. 94

[139] M. Mehndiratta and E. Kayacan. Reconfigurable Fault-tolerant NMPC for Y6

Coaxial Tricopter with Complete Loss of One Rotor. In 2018 IEEE Conference

on Control Technology and Applications (CCTA), pages 774–780, 2018. 96

[140] B. K. Wilburn, M. G. Perhinschi, H. Moncayo, O. Karas, and J. N. Wilburn.

Unmanned aerial vehicle trajectory tracking algorithm comparison. Interna-

tional Journal of Intelligent Unmanned Systems, 1(3):276–302, 2013. 97

[141] J. Schoukens and L. Ljung. Nonlinear System Identification: A User-Oriented

Roadmap, 2019. 101

[142] M. E. Taylor and P. Stone. Transfer Learning for Reinforcement Learning

Domains: A Survey. J. Mach. Learn. Res., 10:1633–1685, December 2009.

ISSN 1532-4435. 103

[143] M. Whorton, L. Yang, and R. Hall. Similarity Metrics for Closed Loop

Dynamic Systems. doi: 10.2514/6.2008-6624. 106

[144] C. E. Rasmussen. Gaussian processes for machine learning. MIT Press, 2006.

110

[145] Q. Li, J. Qian, Z. Zhu, X. Bao, M. K. Helwa, and A. P. Schoellig. Deep

neural networks for improved, impromptu trajectory tracking of quadrotors.

In Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA), pages

5183–5189, 2017. 112

186 BIBLIOGRAPHY

[146] O. Castillo, L. Amador-Angulo, J. R. Castro, and M. Garcia-Valdez. A com-

parative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems

and generalized type-2 fuzzy logic systems in control problems. Information

Sciences, 354:257 – 274, 2016. ISSN 0020-0255. doi: 10.1016/j.ins.2016.03.026.

119

[147] X. Gao and L. Liao. A New One-Layer Neural Network for Linear and

Quadratic Programming. IEEE Transactions on Neural Networks, 21(6):

918–929, June 2010. doi: 10.1109/TNN.2010.2045129. 119

[148] Y. Jin. Advanced Fuzzy Systems Design and Applications. Physica-Verlag,

1st edition, 2012. ISBN 3790825204, 9783790825206. 120

[149] V. I. Utkin. Sliding modes in control optimization. Springer-Verlag, 1992. 122

[150] A. Sarabakha and E. Kayacan. Online Deep Learning for Improved Trajectory

Tracking of Unmanned Aerial Vehicles Using Expert Knowledge. In 2019

IEEE International Conference on Robotics and Automation (ICRA), May

2019. 135

[151] A. Sarabakha and E. Kayacan. Online Deep Fuzzy Learning for Control of

Nonlinear Systems Using Expert Knowledge. IEEE Transactions on Fuzzy

Systems, pages 1–1, 2019. ISSN 1941-0034. doi: 10.1109/TFUZZ.2019.2936787.

137

[152] J. M. Mendel. Type-1 Fuzzy Systems, chapter 3, pages 101–159. Springer

International Publishing, Cham, 2017. ISBN 978-3-319-51370-6. doi: 10.1007/

978-3-319-51370-6 3. 138

[153] F. J. Doyle and M. A. Henson. Nonlinear Systems Theory. In M. A. Henson

and D. E. Seborg, editors, Nonlinear Process Control, pages 111–147. Prentice-

Hall, Inc., Upper Saddle River, NJ, USA, 1997. ISBN 0-13-625179-X. 141

[154] G. Cybenko. Approximation by superpositions of a sigmoidal function. Math-

ematics of Control, Signals and Systems, 2(4):303–314, Dec 1989. ISSN

1435-568X. doi: 10.1007/BF02551274. 144

[155] A. Andoni, R. Panigrahy, G. Valiant, and L. Zhang. Learning Polynomials

with Neural Networks. In Proceedings of the 31st International Conference on

International Conference on Machine Learning - Volume 32, ICML’14, pages

II–1908–II–1916. JMLR.org, 2014. 144

	Abstract
	List of Figures
	List of Tables
	List of Symbols
	List of Acronyms
	I Introduction and Background
	1 Introduction
	1.1 Related Works
	1.2 Contribution
	1.3 Outline

	2 Problem Definition
	2.1 Nonlinear Systems
	2.1.1 Internal Uncertainties
	2.1.2 External Disturbance
	2.1.3 Noisy Measurement

	2.2 Multicopter Unmanned Aerial Vehicles
	2.2.1 Multicopter Unmanned Aerial Vehicle's Dynamics
	2.2.1.1 X4 Quadcopter
	2.2.1.2 Y6 Coaxial Hexacopter

	2.2.2 Control Scheme
	2.2.2.1 Position Control
	2.2.2.2 Velocity Control
	2.2.2.3 Attitude Control
	2.2.2.4 Motors Speed Control
	2.2.2.5 Real-World Control Scheme

	II Fuzzy Logic-Based Control
	3 Type-1 Fuzzy Logic-Based Control
	3.1 Mathematical Preliminaries
	3.2 Singleton Fuzzy Logic Control
	3.3 Non-Singleton Fuzzy Logic Control
	3.3.1 Standard Non-Singleton Fuzzy Logic Control
	3.3.2 Centroid Non-Singleton Fuzzy Logic Control
	3.3.3 Similarity Non-Singleton Fuzzy Logic Control

	3.4 Simulation Results
	3.4.1 Sources of Uncertainties
	3.4.2 Discussion

	3.5 Experimental Results
	3.5.1 Monocular Visual-Inertial SLAM Performance
	3.5.2 Discussion

	3.6 Conclusion

	4 Interval Type-2 Fuzzy Logic-Based Control
	4.1 Mathematical Preliminaries
	4.2 Experimental Results
	4.2.1 Setup
	4.2.2 Trajectory
	4.2.3 Discussion

	4.3 Conclusion

	5 Fuzzy Mapping-Based Control
	5.1 Mathematical Preliminaries
	5.2 Type-1 Fuzzy Mapping
	5.2.1 Derivation of Fuzzy Mapping for DI-T1-FLS
	5.2.2 Analysis of Fuzzy Mapping for DI-T1-FLS

	5.3 Interval Type-2 Fuzzy Mapping
	5.3.1 Derivation of Fuzzy Mapping for DI-IT2-FLS
	5.3.2 Analysis of Fuzzy Mapping for DI-IT2-FLS

	5.4 Simulation Results
	5.4.1 Trajectory
	5.4.2 Discussion

	5.5 Experimental Results
	5.5.1 Trajectory
	5.5.2 Discussion

	5.6 Conclusion

	III Neural Network-Based Control
	6 Artificial Neural Network-Based Control
	6.1 Mathematical Preliminaries
	6.2 Sliding Mode Control-Based Learning
	6.3 Simulation Results
	6.4 Experimental Results
	6.4.1 Fast and Agile Flight
	6.4.2 Motor Failure

	6.5 Conclusion

	7 Deep Neural Network-Based Control
	7.1 Mathematical Preliminaries
	7.2 Transfer Learning
	7.2.1 System Similarity

	7.3 Simulation Results
	7.3.1 Discussion

	7.4 Experimental Results
	7.4.1 Discussion

	7.5 Conclusion

	IV Fuzzy Neural Network-Based Control
	8 Neural Fuzzy-Based Control
	8.1 Mathematical Preliminaries
	8.2 Sliding Mode Control-Based Learning
	8.3 Levenberg-Marquardt-Based Learning
	8.4 Simulation Results
	8.4.1 Discussion

	8.5 Experimental Results
	8.5.1 Discussion

	8.6 Conclusion

	9 Deep Fuzzy Neural Network-Based Control
	9.1 Mathematical Preliminaries
	9.2 Network Training
	9.2.1 Offline Pre-Training
	9.2.2 Online Training

	9.3 Simulation Results
	9.3.1 Discussion

	9.4 Experimental Results
	9.4.1 Discussion

	9.5 Conclusion

	V Final Remarks
	10 Conclusion
	10.1 Future Work

	A Attitude of Rigid Body
	A.1 Transformation of Angular Velocities

	B Hat and Vee Mapping
	List of Author's Publications
	Bibliography

