SAPIENZA

UNIVERSITA DI ROMA

Reactive obstacle avoidance for
guadrotor UAVs based on dynamic
feedback linearization

Facolta di Ingegneria dell'Informazione, Informatica e Statistica
Dipartimento di Ingegneria Informatica, Automatica e Gestionale
Corso di laurea in Intelligenza Artificiale e Robotica

Candidato

Andriy Sarabakha

1192958

Relatore Correlatore

Prof. Giuseppe Oriolo Dott. Lorenzo Rosa

A/A 2014/2015

“A helicopter is a mechanical engineer’s dream and an aerodynamicist’s night-

mare.”

John Watkinson, British teacher

“If you are in trouble anywhere, an airplane can fly over and drop flowers, but a

helicopter can land and save your life.”

Igor Sikorsky, Ukrainian American aviation pioneer

Abstract

This work addresses the problem of ensuring a safe navigation in an unknown cluttered
environment for a quadrotor-like Vertical Take-Off and Landing (VTOL) Unmanned
Aerial Vehicle (UAV). Consequently, the main issue is to perform effective obstacle
avoidance, and we want to solve this problem by designing a fast reactive behaviour
able to ensure absence of collisions both with static and moving obstacles. Moreover, we
want to consider the motion capabilities of the vehicle, so that the obstacle avoidance

controller produces feasible inputs for the robot.

To this aim, we rely on classical obstacle avoidance technique which uses Artificial
Potential Fields (APF). In a first moment, we consider the hypotheses of quasi-stationary
flight and we feed the input given by the APF in a controller based on Dynamic Feedback
Linearization (DFL). We show that the closed-loop behaviour of the resulting linearized
system is not acceptable, especially when the vehicle approaches the obstacle with high
speed. Thus, to solve the issue, we consider the use of a first-order feed-forward, which is
used to generate a short-term trajectory. By differentiating the generated trajectory, we
compute suitable inputs for the DFL controller. At the end, by considering the motion
capabilities of the VITOL UAV in the design of the controller, we obtain a control
framework which ensures the feasibility of the commanded trajectory for the original

system.

Contents

Abstract

List of Figures

Abbreviations

Symbols

1 Introduction

1.1
1.2

Motivations and objectives Lo
OVerview o e

2 Modelling and control

2.1

2.2

Quadrotor dynamics
2.1.1 Configuration definition L.
2.1.2 Complete quadrotor model oL
2.1.3 Assumptions and simplifications
Dynamic feedback linearization
2.2.1 Introduction
2.2.2 Application to quadrotor modelo

3 Navigation and obstacle avoidance

3.1

3.2

Driving inputs
3.1.1 First-order feed-forward
3.1.2 Towards feasibility of inputs
Obstacle avoidance L
3.2.1 Artificial potential fieldso
3.2.2 Application to quadrotor

4 Simulation results

4.1

4.2

Numerical simulations,
4.1.1 DFLtests
4.1.2 Obstacle avoidance tests
4.1.3 DFL with obstacle avoidance tests
Dynamical simulations o
4.2.1 Circle tracking

iv

iii

vi

viii

ix

10
11
13
14
16

23
23
23
24
27
28
30

Contents v
4.2.2 Travelling in labyrinth 00000 47

5 Experimental results 48
5.1 Hardware system 48
51.1 Quadrotor 49

5.1.2 RGB-Dsensor 50

5.2 Parameters estimation L o 53
5.2.1 Speed conversion Lo 53

5.2.2 Thrust coefficiento 54

5.2.3 Drag coefficient and moments of inertia 55

5.3 Datafiltering L 57
5.3.1 Median filter 57

5.3.2 Average filter 58

5.3.3 Polynomial fittingo 59

6 Conclusions 62
A Rotation matrix 63
A.1 Derivative of rotation matrix 64

B Lie derivative 66
C Inertia matrix 67
C.1 Solid cuboid e 68
C.2 Solid cylinder 70

D Point reprojection 72
Bibliography 74

List of Figures

1.1
1.2

2.1

2.2
2.3
2.4
2.5
2.6

3.1

3.2

3.3

4.1
4.2

4.3
4.4

4.5
4.6
4.7
4.8
4.9
4.10

4.11

4.12
4.13

4.14
4.15

4.16

Quadrotor aircraft. 1
System architecture. 4

The quadrotor concept. The width of the arrows is proportional to the

propellers” angular speed. oL L L oo 6
Quadrotor model with reference frames. 7
Block diagram of the feedback linearization. 14
Block diagram of the double integrator. 17
Block diagram of the control law. 20
Block diagram of the closed loop system. 22

An examples of velocity, acceleration, jerk and snap transitions needed to

achieve desired velocity @y from initial velocity zo. 26
A repulsive potential field in the two-dimensional configuration space with

a circular obstacle. 29
Bounding sphere surrounding schematic quadrotor structure. 30
3D plot of circle tracking on zy-plane with DFL. 34
Tracking of a circle on xy-plane with DFL. Plots of desired (dashed green

line) and realized (solid blue line) trajectories. 35
3D plot of vertical helix tracking with DFL. 36
Tracking of a vertical helix with DFL. Plots of desired (dashed green line)

and actual (solid blue line) trajectories. 37
Reaction of the quadrotor to the obstacle. 37
Artificial potential field related to the obstacles and to the command. . . 38
Reaction of the quadrotor to the obstacle. 39
3D plot of circle tracking in presence of an obstacle. 40
Top view of circle tracking in presence of an obstacle. 41
Tracking of a circle in presence of an obstacle. Plots of desired (dashed

green line) and realized (solid blue line) trajectories. 41
CAD model of Pelican quadrotor with Kinect depth sensor. 42
Block diagram of ROS nodes and ROS topics. 43

An examples of profiles of transitory velocities, accelerations, jerks and
snaps needed for circle tracking. The red curves are functions on z-axis

and the blue curves are functions on y-axis. 45
3D plot of circle tracking on zy-plane with DFL. 46
Tracking of a circle on xy-plane with DFL. Plots of desired (dashed green

line) and realized (solid blue line) trajectories. 46
Top view of a small labyrinth and quadrotor’s path (blue curve). 47

vi

List of Figures vii
5.1 AscTec Pelican quadrotor. 48
5.2 ASUS Xtion PROLIVE. 50
5.3 An example of raw data from ASUS Xtion. 51
5.4 The point cloud reconstructed from the RGB image in Figure 5.3a and

the depth map in Figure 5.3b. o 0oL 52
5.5 Correspondences between AscTec motor velocity and real angular velocity

and the corresponding regression line. 53
5.6 An example of raw quadrotor height from sonar (blue curve) and filtered

value (red curve). 58
5.7 An example of raw quadrotor angular velocity from IMU (blue curve) and

filtered value (red curve). 59
5.8 An example of raw quadrotor acceleration from accelerometer (blue curve)

and filtered value (red curve). oo 60
5.9 An example of numerical derivative of jerk (blue curve) and derivation of

jerk with polynomial fitting method (red curve). 61

Abbreviations

BLDC
DFL
DOF
GPS
HLP
IARC
IMU
LLP
MAV
MFR
MIMO
PD
PID
PPM
RGB
ROS
UAV
VM
VTOL

Brush-Less Direct Current
Dynamic Feedback Linearization
Degrees Of Freedom

Global Positioning System

High Level Processor
International Aerial Robotics Competition
Inertial Measurement Unit

Low Level Processor

Micro Aerial Vehicle

Miniature Flying Robots
Multiple-Input Multiple-Output
Proportional-Derivative
Proportional-Integral-Derivative
Pulse Position Modulation
Red-Green-Blue

Robot Operating System
Unmanned Aerial Vehicle
Virtual Model

Vertical Take-Off and Landing

viii

Symbols

e

s}

<

QT > o

Q
G

8

I\

SEESIISENS

iS]

SIS

<

o
)

s

<

quadrotor linear acceleration in world frame
quadrotor linear acceleration in body frame
aerodynamic forces about x-axis
aerodynamic forces about y-axis
aerodynamic forces about z-axis
aerodynamic moments about z-axis
aerodynamic moments about y-axis
aerodynamic moments about z-axis
quadrotor body

propellers thrust coefficient

configuration space

image of obstacle in configuration space
unmodelled forces about x-axis
unmodelled forces about y-axis
unmodelled forces about z-axis

external disturbance moments about z-axis
external disturbance moments about y-axis
external disturbance moments about z-axis
propellers drag coefficient

external forces vector

force generated by i** propeller

gravity acceleration

inertia matrix

moment of inertia about z-axis

moment of inertia about y-axis

ix

2772222
B E E

FEFEZ2Z 722 IEEE
=

Symbols

o~

o~
i

o =

ST I = I IR T

=

[t

< <« foid

N

Te

moment of inertia about z-axis

quadrotor arm length

quadrotor propeller length

quadrotor mass

14, obstacle

quadrotor angular velocity in body frame z-axis
quadrotor configuration

quadrotor angular velocity in body frame y-axis
rotation matrix

radius of quadrotor bounding sphere

quadrotor angular velocity in body frame z-axis
transformation matrix

quadrotor thrust force

repulsive potential field

control inputs to quadrotor system

control inputs to extended quadrotor system
quadrotor linear velocity in world frame z-axis
quadrotor linear velocity in world frame
quadrotor volume

quadrotor linear velocity in body frame
quadrotor linear velocity in world frame y-axis
workspace

quadrotor linear velocity in world frame z-axis
quadrotor state

quadrotor extended state

quadrotor position along world frame z-axis
output of quadrotor system

quadrotor position along world frame y-axis
state of linearized system

quadrotor position along world frame z-axis

pitch angle in world frame

external torques vector

EE &
z

=
9,

[rad/s]

[rad/s]

Symbols

xi

T

7o
To
Ty

wps

Wi

torque generated by i** propeller

pitch torque in body frame

roll torque in body frame

yaw torque in body frame

roll angle in world frame

yaw angle in world frame

quadrotor angular velocity in world frame
quadrotor angular velocity in body frame

rotational speed of i*" propeller

xii

Chapter 1

Introduction

1.1 Motivations and objectives

Since the beginning of time flying objects have exerted a great fascination on man. The
last decades has seen many exciting developments in the area of Unmanned Aerial Ve-

hicles (UAVs). Therefore, the scientific challenge in UAV design and control is very

FIGURE 1.1: Quadrotor aircraft.

Introduction 2

motivating. On the other hand, UAVs are gaining increasing interest because of a wide
area of applications from military to civilian fields. At the same time, in the past years
many works were concerned on developing methods for navigation and obstacle avoid-
ance for the autonomous ground vehicles. The existing ground robots have limitations
on reaching the desired location in several applications. Thus, the recent progresses in
technology push towards developing new mobility concepts, which include flying sys-
tems. However, despite the dynamics of flying vehicles is more complex than the one
of ground robots, one could still apply the techniques already developed for ground
robots. An attractive group of flying robots is made up of quadrotor aircraft (shown in
Figure 1.1).

In particular, a quadrotor or quadcopter is an UAV which has Vertical Take-Off
and Landing (VTOL) characteristics, like helicopters, but lifted and propelled by four
rotors in a cross configuration. Due to its simple symmetric mechanical configuration, it
is capable of flying without all those complex linkages appearing in typical helicopters.
However, like a classical helicopter, a quadrotor has non-linear dynamics. Moreover, it is
really hard to model all secondary order effects. Thus, a control system capable of dealing
with non-linearity, unmodeled dynamics and disturbances is needed. Therefore, the
interest comes not only from its dynamics, which represent an attractive control problem,
but also from the design issue. Integrating the sensors, actuators and intelligence into a

lightweight flying system is not trivial.

Currently, technology provides a new generation of integrated micro Inertial Mea-
surement Unit (IMU), and the latest progresses in high density power storage offers very
promising results especially for Micro Aerial Vehicles (MAV); thus, the cost and size
reduction of flying systems makes them very interesting both for civilian and military
applications. In particular, quadrotors are very promising platforms: because of their
increased mobility in the environment, they are able to be effectively employed both
indoor and outdoor. Moreover, quadrotor propulsion system is very robust and guaran-
tees a stable flight. Besides, quadrotors are low-noise, emission-free and environmentally
friendly devices. On the other hand, small quadrotors have limited payload, that implies
a selection of light sensors, and the limited computational power on-board makes the
development of fully autonomous quadrotors very challenging. In the last ten years,
the UAVs’ autonomy was dramatically improved with the development of new naviga-
tion, communication, control and image processing technologies. Thus, nowadays we
can consider some UAVs as intelligent robotic systems integrating perception, reasoning

and decision making capabilities, which allow to operate in complex environments.

Recently, small quadrotors had a quick growth and had attracted much interest in

the research community. Indeed, the quadrotor has become a standard platform in the

Introduction 3

experimental applications. Great manoeuvrability and small size of those vehicles make
them suitable for indoor use. However, unsupervised flight of aerial vehicles is a hard

challenge, especially in indoor applications, where it is not possible to use GPS'.

Most of quadrotor’s applications can in principle be achieved by using straight-
forward linear control systems, such as Proportional-Derivative (PD) controller. Nev-
ertheless, to fly in cluttered environments it could be useful to obtain a very accurate
stabilization, a highly precise navigation and collision avoidance with tracking of aggres-
sive manoeuvres. To these purposes, non-linear control techniques based on Dynamic
Feedback Linearization (DFL) should be designed to provide better convergence and
robustness performances. Through a change of variables, DFL transforms a non-linear
system into an equivalent linear system with suitable control input and output func-
tions. This equivalent linear system consists of a number of decoupled controllable and
observable canonical forms. However, this technique needs exact cancellations and full
accessibility to the state of the quadrotor. For these reasons it presents several critical

issues when dealing with real implementation in the physical world.

1.2 Overview

The outline of this work is as follows. After this introductory chapter (Chapter 1), in
Chapter 2 we present the quadrotor dynamical model and we show the basic principles
of DFL. In Chapter 3 a control analysis of the quadrotor is reported in order to obtain
the feed-forward+feedback controller with obstacle avoidance. In Chapter 4 the sim-
ulation results are given to check the designed controller behaviour. In Chapter 5 the
experimental system is described and the experimental results are presented. Finally, we
will draw some concluding remarks in Chapter 6. The derivation of 3D rotation matrix
and its derivative is reported in Appendix A. The bases of Lie derivative are described
in Appendix B. The computation of inertia matrices for solid cuboids and cylinders is
done in Appendix C. The reprojection of an image point to a correspondent point in

space is shown in Appendix D.

In Figure 1.2 is depicted the overall system architecture. High level navigation
commands are provided by an operator through a joystick or keyboard. This command is
interpreted by the controller as a desired velocity. In order to compute the snap? needed
to achieve this desired velocity, the controller needs both the desired quantities and the

actual ones. Some quantities, like altitude, attitude, vertical velocity, angular velocities

Y Global Positioning System (GPS) signal has very poor performance in indoor environments.
2 Snap is the fourth derivative of the position vector with respect to time. The choice of commanding
with snap is argued out later in Subsection 2.2.2.

Introduction 4

linear accelerations

attitude, angular velocities

motors
velocities

desired
snap

desired
velocity

ive velocity,
repulsive acceleration,
repulsive jerk

Ostacle Avoidance

linear
velocities

point cloud

depth image

RGB image

height

FIGURE 1.2: System architecture.

and linear accelerations, are directly measured by using UAV’s sensors. Others need to
be estimated by additional processes. The obstacle avoidance block needs to compute
the desired velocities, accelerations and jerks in order to prevent hitting an object during
the execution of the desired velocities given by the user; the optical flow block estimates
velocities on the horizontal plane. Furthermore, depth image to point cloud converter
processes the depth map in order to return a set of 3D points. Once the desired snap
is computed by the controller, it is sent to the dynamic feedback linearization, which,
inverting the quadrotor’s dynamics, computes the commanded motors velocities, and in

turn send them to the quadrotor.

Chapter 2

Modelling and control

In this chapter we derive and describe a dynamic model representing a quadrotor. A
complete quadrotor’s model is provided, afterwards further assumptions and simplifi-
cations are made. The second part of this chapter introduces the dynamic feedback

linearization technique in order to design a feedback control law for a quadrotor.

2.1 Quadrotor dynamics

To develop control laws and estimation schemes, it is needed to model the dynamics of
the quadrotor and understand how forces and torques act on the vehicle. First, dynamic
and kinematic differential equations based on the quadrotor model are derived, after
which complete quadrotor model will be developed. Then, a state variable notation is

introduced.

A quadrotor is an aerial vehicle actuated by modulating the speed command of
each of the four motors. It consists of four identical rotors and propellers located at
the extremities of a cross-shaped frame. In a quadrotor all the movements are the
consequence of the propellers’ speed (as shown in Figure 2.1): two propellers rotate in
a clockwise direction (front and rear propellers) while the other two rotate in a counter-
clockwise direction (left and right propellers). Changing simultaneously the throttle of
all motors, while the vehicle is horizontal, produces vertical motion (Figure 2.1a). A
difference of speed between the blades on the same axis carries a rotation of the aircraft
along the other axis. Roll moments are produced by adjusting the thrust of the left
motor with respect to the right one (Figure 2.1b). Pitching moments are produced
in a similar way by increasing the thrust of the front motor while decreasing that of

the rear motor or vice versa (Figure 2.1c). Yawing moments are slightly more subtle:

Modelling and control 6

(a) Motion along quadrotor’s vertical axis. (b) Roll motion.

(¢) Pitch motion. (d) Yaw motion.

FIGURE 2.1: The quadrotor concept. The width of the arrows is proportional to the
propellers’ angular speed.

if the front and rear motors (which spin clockwise) spin faster than the left and right
motors (which spin counter-clockwise), yawing results due to the difference in rotor drag
moments on the respective motors (Figure 2.1d). Therefore, the quadrotor is a highly
non-linear dynamic system with four control inputs (angular speed of four rotors) and
six degrees of freedom (position and orientation in space), resulting in a multiple-input

multiple-output (MIMO) under-actuated system.

2.1.1 Configuration definition

Let the world fixed inertial reference frame be {Z)y, 4w, 2w} and the body frame be
{ZB,yn, Zp}. The origin of the body frame is located at the center of mass of the
quadrotor. Axes Zp and g lie in the plane defined by the centres of the four rotors
and respectively point toward motor 1 and motor 2, as illustrated in Figure 2.2. Axis
Zyy points downward, opposite to the direction of gravity, as well as axis Zg which is

opposite to the direction of the total thrust.

Modelling and control 7

FIGURE 2.2: Quadrotor model with reference frames.

The four propellers rotations generate four forces (f1, f2, f3 and f4), directed along
the axis of rotation Zp and with module proportional to the speed of rotation, and four
torques (71, T2, 73 and 74), around the axis of rotation zZg and with module proportional

to the speed of rotation [1]:

fi = bw?
o i=1,...,4, (2.1)
Ti = dlw;

where b is the propeller thrust coefficient, d is the propeller drag coefficient and w; is

the rotational speed of the " propeller.

From the point of view of control, it is easier to consider these four forces and four
torques as the union of the forces, directed towards the vertical axis of the quadrotor
Zyy and applied to its center of mass, and three rotation torques, along roll (Zyy), pitch
(yw) and yaw (Z)y). The quadrotor electric motors are velocity controlled, so the vector

u of control inputs may by considered directly as

T
u:[T Ty To 7'¢])

Modelling and control

where T is the total thrust and acts along I;W axis, whereas 74, 79 and 7, are the
moments acting around Zyy, §y and Zyy axes, respectively. Under these considerations,

the relation between u and w;, i = 1,...,4, becomes algebraic [2]:

T=fi+fo+fa+fa
7o = l(—f2 + fa)
9 = 1(f1 — f3)

Ty = —T1 + T2 — T3 + T4,

(2.2)

where [is the arm length. Applying (2.1) to (2.2) and writing it in matrix form:

T b b b b |w?
| | 0 —bl 0 b w3
ol o 0 —bl 0| |w?
Ty —dl dl —dl dl| |w?

This relation is always invertible, when [# 0, b # 0 and d # 0. Therefore, inputs can
then be brought back to the speed of the individual propellers using the following inverse

transformation:

2] a0 21 o] [T
w3 1 jdl =2d 0 b Té
w? 4bdl \d1 0 —2d —b| |7
wj di2d 0 b |7y

The absolute position of a quadrotor (three DOF) is described by the three Carte-
sian coordinates (z, y and z) of its center of mass in the world frame and its attitude
(three DOF) by the three Euler’s angles (¢, # and). These three angles are respectively
called roll (=5 < ¢ < %), pitch (=5 <6 < §) and yaw (0 < ¢ < 2m).

The derivative with respect to time of the position (z, y, z) is given by
T T
VZ[a'c v z] :[u v w} ,
where V is the absolute velocity of the quadrotor’s center of mass expressed with respect

to the world fixed inertial reference frame. Let Vz € R? be the absolute velocity of the

quadrotor expressed in the body fixed reference frame. So, V and Vg are related by

Modelling and control 9

V = RVp, (2.3)
where R € SO(3)! is the rotation matrix from the body frame to the world frame and

is computed in Appendix A:

costcos costsingsind — cosgsiny sin ¢ sin) + cos ¢ cos 1 sin 6
R = |cosfsinty cos¢costy +singsintsinf cos ¢sin sinf — cos 1) sin ¢

—siné cos 6 sin ¢ cos ¢ cos 8

Similarly, the derivatives with respect to time of the angles (¢, 6,) are given by
. . .aT
w=lé 0 9]
and the angular velocities expressed in the body frame are

T
(AJB:|:p q ’I":| .

The relation between w and wg is given by

w = Twp, (2.4)

in which T is the transformation matrix given by

1 singtanf cos¢tanf
T=10 cos ¢ —sin ¢

0 singsecf cospsech

Correspondingly, let A € R? be the absolute acceleration of the quadrotor expressed
in the world fixed reference frame and Ap € R3 be the absolute acceleration of the
quadrotor expressed in the body reference frame. So, the relation between A and Apg is

computed by the analytical derivative of (2.3):

A= RVB + RAg.

150(3) denotes the 3D rotation group.

Modelling and control 10

In Appendix A.1 is shown how the time derivative of R can be expressed as a function

of R itself. Using this expression, the final relation is obtained?:

A= [w]XRVB +RAp = [w]XV + RAB.

2.1.2 Complete quadrotor model

Using the Newton-Euler equations about the center of mass, the dynamic equations for

the quadrotor are the following [3]:

mV = F.
(2.5)
Iwp = —wp x lwg + T,
where m is the mass and I is the diagonal inertia matrix given by
I, 0 O
I=1]0 1, 0 (2.6)
0 0 I

and F. is the vector of external forces and 7. is the vector of external torques. They
contain the quadrotor’s mass, the aerodynamic forces, the thrust and the torques de-

veloped by the four rotors. Some calculations yield the following form for theses two

vectors
[(cos¢psinfcost +singsiny) T + A, + D,
F.= |—(cos¢sinfsiny —singcosy) T + A, + D,
—cos¢pcosT +mg+ A, + D,
3 (2.7)
T¢+AP+DP+GP
Te = 7'0+Aq+Dq—|—Gq ,
_T¢+AT+DT+GT
in which

% [w]x denotes the skew-symmetric matrix, given by (A.5).

Modelling and control 11

e A;, Ay and A, are the aerodynamic forces acting on the UAV?;

e D,, Dy and D, are the external disturbances and unmodelled forces, given by

wind, contacts or collisions;
o A, A, and A, are the aerodynamic moments acting on the UAV*;
e Dy, D, and D, are the external disturbance moments, like wind;
e G,, G, and G, are the gyroscopic effects generated by propellers;

e and g is the gravity acceleration (g = 9.81m/s?).

Using dynamic and kinematic differential equations (2.3), (2.4), (2.5) and (2.7), the

following system of non-linear differential equations is obtained

Tr=u
y=v
Z=w

¢3=p+singbtan9q—|—cos¢tan9r

0 = cos ¢q — sin ¢r

= Sndg y cosd, (2.8)
u:—%(COS¢COS¢sin9—|—sin¢sin¢)T+% |
0 = —% (cos ¢sinypsinf — cospsing) T + %

W= —%COSQSCOSHT—FL(]—F %

p= fyl—xfzqr + irqg + %54_0?

N | 1 Ag+Dy+G
q= Iyxpr_i_ETG_i_ q I: q

VA II—Iy 1 Ar+Dr+Gr
T = T pq+ET¢+T

2.1.3 Assumptions and simplifications

Let’s assume that the quadrotor propeller speed is directly proportional to the current
supplied to the motor. If the velocity induced by the wake is omitted, then thrust and
torque are proportional to the square of the angular speed of the propeller, as supposed

in the relation (2.1).

3 Aerodynamic forces are computed as A; = %pawCi\VPVQ/ 3, where pair is the air density, C; are the
aerodynamic coefficients and V' is the quadrotor volume [4].

4 Aerodynamic moments are computed as A; = %pa”C’i|w\2V7 where pqir is the air density, C; are the
aerodynamic coefficients and V' is the quadrotor volume [4].

Modelling and control 12

The quadrotor model (2.8) is assumed to be sufficiently accurate in representing all
quadrotor functional motions. But is not suitable for control design, because it depends
upon the aerodynamic forces (A,, A, and A;) and moments (A4,, A, and A,), which
are difficult to model in presence of parametric uncertainties. On the other hand, the
external disturbance forces (D, D, and D) and moments (D,,, D, and D,) are unknown
in the presence of unpredictable winds and turbulences. Thus, these terms are neglected
during the control design and are considered as disturbances. Many of those terms are
dissipative (e.g. due to the air friction), so that their contribution partially contributes
to the stability of the system. The gyroscopic terms (G, G4 and G,) are second-order
terms with respect to the other torques acting on the vehicle, so they can be neglected.

Taken all these assumptions, the complete quadrotor model (2.8) becomes:

T=u
y=v
z=w

<i>=p+sin¢tan9q+cosd>tan9r

0 = cos ¢q — sin ¢r

sin ¢ cos ¢

V= Cos09 Tt cosg”
U= —% (cos ¢ cos) sinf + sin psin) T

(2.9)
b= —-L (cos¢sinysind — costpsin¢p) T

w = —% cospcosfT + g

N i

p= g+ 17y

q= L;gf“’pr + iTg

. I.—1 1
T = 7Iz ypq+ ETw,

which can be described in state space form

where

Modelling and control 13

u
v
w

p + sin ¢ tan Aq + cos ¢ tan Or

cos ¢q — sin ¢r

sin ¢ cos ¢
f(X) _ cosGQ+ cosd !
0)

0

g
I,—1I.
i

IZI—Il-pT

Y
L T, P4 i

I.—1I,

o O o o O

0
— L (cos ¢ cos 1 sin @ + sin ¢ sin 1)
—% (cos psin) sin @ — cos 1 sin @)
—% cos ¢ cos 0
0
0
0

I © © o o o o O o o o o

O OoOffr o o o o o o o o o
O o © o o o o o o o O

and

T
u:[T To To Ty

2.2 Dynamic feedback linearization

Due to under-actuation, the quadrotor system (2.9) can not be transformed into an

equivalent linear and controllable system by static state feedback. However, it is possible

Modelling and control 14

Linearized system

Non-li :
Feedback linearization: on-linear system

% = f(x) + g(x)u

u=a(x)+ p(x)v ¥ = h(x)

FIGURE 2.3: Block diagram of the feedback linearization.

to resort to dynamic state feedback to obtain full state linearization. Dynamic feedback
linearization is a commonly used technique to approach non-linear control design that
algebraically transforms a non-linear system into an equivalent linear, controllable and
observable one, consisting of a number of decoupled canonical forms, so that the linear

control theory can be applied. This problem is known as the ezact linearization problem.

2.2.1 Introduction

Given a non-linear system [5, 6]

(2.10)

where x is the system state, u is the system input, y is the system output, f(x), g(x)
and h(x) are vector fields in R"”. The task of feedback linearization is to identify a static

state feedback control law of the following form:

u = a(x)+ S(x)v, (2.11)
where v is an new control input, a(x) and [(x) are smooth functions defined in a

neighbourhood of some point x¢g € R™ and 3(xg) # 0, such that the closed-loop system
in Figure 2.3, composed of (2.10) and (2.11):

(2.12)

Modelling and control 15

behaves as a linear completely accessible system:

z=Az+ Bv
(2.13)

y = Cz,

in which z represents the new state, A, B and C are matrices of suitable dimensions.

Let [7“1 e ro} be the vector relative degree® of the system (2.10). Differentiating

each element of the output vector for their relative degree [7]:

(r1) (ro)] "
W] = b0 + A,
where®
L P ha(x) - Ly, L' Tha(x)
A(x) = : : (2.14)
Lg L ho(x) -+ Lg, L'y~ ho(x)
and
T
b(x) = [Lphi(x) - Lpho(x)

The main result about the input-output decoupling problem is that this problem
is solvable if and only if the matrix A(x) is non-singular. In that case, the static state
feedback (2.11) with

(2.15)

renders the closed-loop system (2.12) linear and decoupled from an input-output point

of view. More precisely,

Yy = i=1,...,0.

5 The relative degree 7; is the number of times one has to differentiate the ith output in order to have
at least one component of the input vector u explicitly appearing.
5L rh denotes the Lie derivative of the function h with respect to the vector field f (see Appendix B).

Modelling and control 16

2.2.2 Application to quadrotor model

First, it is necessary to define the control objective by choosing a suitable output function
for the system (2.9). The number of outputs is set to the number of inputs, due to the
under-actuation it does not make any sense to choose more outputs than control inputs.

The most interesting outputs are the position of the quadrotor (z,y,z) and the yaw

orientation 1) [8], because it represents the heading direction, so the output function is

y =h(x) = [x Yy oz w]T. (2.16)

In order to feedback linearizing the system, the necessary and sufficient condition

for the solvability of the state space exact linearization problem is [9]:

iri =n. (2.17)
i=1

For the nonlinear system (2.9), n = 12 and

T Tro T3 7"4}:[2 2 2 2}.

Since,

ri+ro+ry+ry=8#£12,

the condition (2.17) is not satisfied and, therefore, the input-output decoupling problem
is not solvable for the system (2.9) by means of a static state feedback control law (2.11).

In fact, if we compute A(x) using equation (2.14):

_% (cos pcostsinf + sin psinyy) 0 0 0]
Afx) = % (cospsineysinf — cospsing) 0 0 0
% cos ¢ cos 6 0 0 0 ’
I 0 0 i sin ¢ sec 0 i COS ¢ sec 9_

which is singular for any x. In order to linearize (2.9), we need to invert A(x) in
(2.15). Indeed, due to the under-actuation of the quadrotor, its system (2.9) can not

be transformed into an equivalent linear and controllable one by static state feedback.

Modelling and control 17

o—»f ,f N

FIGURE 2.4: Block diagram of the double integrator.

The reason is that the second order derivatives of x, y and z are affected only by the
control input u; and none by ug, ug and u4. Thus, in order to get A(x) non-singular, the
appearance of u; should be delayed to higher order derivatives of x, y and z. In order
to achieve this result, a dynamic compensator is introduced. A dynamic compensator
is a feedback structure which incorporates an additional set of state variables and it is

modelled by the following equations [3]:

(2.18)

in which @ is new reference input, x are auxiliary state variables, vy(x,x) and §(x, x)
are vector fields in R™. The purpose of the addition of x is to achieve a right relative

degrees.

We set u; equal to the output of an auxiliary dynamic system driven by a new
reference input @; and modelled by the first equation of (2.18). The simplest way in
which this result can be achieved is to set this auxiliary dynamic system equal to a

double integrator (Figure 2.4). In this case,

and

§(x,x) = Lo oo

0000]

So, u1 is set equal to the output of a double integrator driven by ;:

Modelling and control 18

up =¢
(=¢ (2.19)
=1

The other input variables are left unchanged:
U9 = ﬁQ
us = @3 (2.20)
Uy = Uyg.

Now, w; is not any-more an input for the system (2.9), but becomes the internal

state ¢ for the new dynamical system (2.19). The obtained extended system is

T=1u
y=v
z=w

¢ = p + sin ¢ tan Aq + cos ¢ tan Or
6 = cos ¢q — sin ¢r
¢ — sind)q + cosqST

cos 6 cos
= —-L (cos ¢ cost)sinf + sin ¢ sin

- (cos ¢ cos v ¢sin) ¢ (2.21)
1';:—%(cosgbsirnbsin@—cosd;singb)(

w=g-— %cosqbcos@(

N i
P= " qr+i7¢

. -1, 1
§ = =Epr+ 1o

, Ip—1,

U Ynq + iTw
¢(=¢

é:ala

The system (2.21) can be described in the state space form

x = f(%) + g(x)a,

in which

Modelling and control 19

s=[x" X =[e v o0 v uvwpgrce]. @

u
v
w

p =+ sin ¢ tan q + cos ¢ tan Or

cos ¢g — sin ¢r
sin ¢ 5
ZOSGQ + EEZOT
(%) —2L (cos ¢ costpsin @ + sin ¢ sin) ¢
X) = :
—% (cos psinesinf — cos 1 sin @) ¢

qg— %cosqﬁcost%

I,—1.
yU

_ O O O O O O O o o o o o o

©C O O OoOff o O o o o o o o o
O O Odro O 000 0o o o o o
O oMo o o o 0o o oo o o

and

o>
Il
L—
N
&
N
&

Modelling and control 20

(0} 3 ¢ us
s o .
U9 U2
Feedback linearization: » Quadrotor dynamics:
- U U
0= a(x,6,6) + Bx .V |- o %= f(x)+g(x)u
Uy Uy

FI1GURE 2.5: Block diagram of the control law.

The input-output decoupling problem is solvable for the non-linear system (2.9)
by means of a dynamic feedback control law, if it is solvable via static feedback for
the extended system (2.21). Since the extended non-linear system (2.21) has dimension

n = 14 and

1;1 fg fg f4:|:|:4 4 4 2:|,

the condition (2.21) is satisfied and, therefore, the input-output decoupling problem is

solvable for the system (2.9) by means of a dynamic feedback control law of the form:

i = a(%) + BV, (2.23)

where a(x) and 3(x) are computed using equations (2.15). Moreover, we can recompute

A(X) using equation (2.14):7

M(SpSy + CHCySa) m(CySy — CpSpSe) —MCHCh 0
Iym - I,m I,m
A%) = - (CpSy — CypSeSe) 4 (cpCy + 5¢5450) oSy 0
_Lym _Lym Lym 0
¢ v [[
IZ Iz IZ
Cm6¢09t¢ Cm09t¢8¢ — Cmt¢89 IZ%_

"¢y, sg and te denotes respectively cos @, sin @ and tan 6.

Modelling and control

21

The matrix A(X) is non-singular at any point characterized by (# 0, ¢ # £5 and
0 # £7. Recalling the relations between u and 1 in (2.19) and (2.20), the structure for

the control law of the original system (2.9) is shown in Figure 2.5.

Finally, the system can be transformed via dynamic feedback into a system which,

in suitable coordinates, is fully linear, controllable and observable [5]:

.
T = V1
Y = v9
Z =03
Y=

The change of coordinates z = ®(x) is given by [6]:

z1 = hl(f() =T

2 = Lyhi(%) = &
2= L2 (%) = &
o= (%) = &
z5 = ha(X) =y

26 = Lyha(X) =9
27 = Liha(X) = § (2.24)
28 = L?hg(fi) =Y
z9 = h3(X) =z

z10 = Lyhg(X) = 2
211 = L?hg(fc) =z
21 = L3ha(%) = %

<

Z213 — h4(f() =

\214 = th4(§(> = @D

In the new coordinates, the non-linear system (2.21) appears as the linear system (2.13),

in which®

80 denotes a matrix of zeros of appropriate dimensions.

Modelling and control

U1 Z4 z23 29 21 =
e e e
V9 28 27 26 25 =Y
S O T
V3

I 212 / 21 / 210 / 29 =2

V4 214 213 =

o o [

FI1GURE 2.6: Block diagram of the closed loop system.

T
7z = |:zl 214:| y

T
V:[Ul V2 U3 U4})

T T
YZ[Z1 25 29 213} :[30 y z ¢} ;
(A, 0 0 0] 0 1 0 0
0 A; 0 0 0010 01
A.: ;A—]_: 7A2:)
0 0 A; O 000 1 00
0 0 0 A, 0000
B, | 0 0 0 o] 0 0 0 o] 0 0 0 o]
B, 000 0 0000 0000
B = 7B1: 7B2: 7B3:

B 000 0 0000 0000
B, 1000 0100 0010
0000
B4: 5
000 1

c, 0 o0 o]
C, 0 0

C-= ,01=[1 0 0 0},02:[1 o]
0 0 C; 0
0 0 0 Cs

The structure of the system in the new coordinates (2.21) is shown in Figure 2.6.

Chapter 3

Navigation and obstacle

avoidance

In this chapter obstacle avoidance problem applied to a quadrotor robot will be consid-

ered.

3.1 Driving inputs
3.1.1 First-order feed-forward

On the equivalent linear system (2.24) can be applied all standard control techniques
given by linear control system theory. Since we are dealing with four chains of integra-
tors, standard PD control law results the best choice. We want to control the quadrotor

position (z,y, z) and the yaw orientation 1):

T
Yd = [fvd Yd 24 Yd
and the errors are
exr Tg— T
€y Yd — Y
e=yqa-y= =
e 24— 2
ey | Ya —]

23

Nawvigation and obstacle avoidance 24

T
At this point we can define a vector of four desired inputs vqg = |vg1 vg2 vas ”d74]
[10]:

3
vag = Eg+ Y kel
=0
3
'Ud’Q =Y d + Z ky,iegf)
=0
3 .
Vi3 = Zq+ Z ks el
=0

1
vag =Yg+ Y kw,i€$)7
i=0

where k;;, ky; and k. ;, 1 = 0,...,3, and ky ;, j = 0,1, are the gains properly chosen
in such a way that the corresponding eigenvalues are placed in the open left half of the
complex plane. For this purpose, the coefficients of a Hurwitz polynomial' are chosen
[11].

3.1.2 Towards feasibility of inputs

In order to compute four control inputs in (3.1), we have to know the desired snaps
(Z'q, Y, Zq), jerks (Z'q, Yg, Zq), accelerations (iq, g, 24, ﬁd) and velocities (24,
Yd, 2d, 1/}d) at any point of time. Since we want to control the quadrotor in velocity,
all the quantities have to be reconstructed from the desired velocities. If we simply do
a numerical derivative of the desired velocity, the result is very noisy. So we need to

proceed in an alternative way.

Let’s consider a generic septic polynomial? function which can represent the velocity

profile on z-axis:

B(7) = 77" + 60 + 17T + 670 + 570 + ea + 370 + e’ + 1T + o, (3.2)

in which 7 € [0, 1] is normalized time and ¢;, i = 0, ..., 7, are coefficients to be adequately

chosen. If we do the derivative of (3.2), we obtain acceleration, jerk and snap:

! Hurwitz polynomial is a polynomial whose coefficients are positive real numbers and whose roots’ real
part is zero or negative.
2 Septic polynomial is a polynomial that has 7 as the highest exponent of its terms.

Nawvigation and obstacle avoidance 25

i(r) = 7erm0 + 6eg® + BesT + dey + 33T + 2c0T + ¢
T (1) = 42¢77° + 30ceTt + 20c573 + 12¢47% 4 637 + 2¢o (3.3)
(1) = 210¢77 + 120¢673 + 60c572 + 24c47 + 6c3.

Now, we set the initial conditions:

(3.4)
.T(O) = 2co = IBO
Z°(0) = 6c3 = T,
and the final conditions:
(1) =crt+cgtesteatezteaterte=1ap
Z(1) = Ter 4+ 6¢6 + 5es +4eq + 3cs +2co+¢1 =0 (3.5)

x(l) = 42c7 + 30cg + 20c5 4+ 12¢4 4 6¢3 + 2¢0 = 0

#(1) = 210¢7 4 120¢6 + 60cs5 + 24¢4 + 6¢3 = 0.

At this point we have eight unknowns ¢;, ¢ = 0,...,7, and eight conditions (3.4) and

(3.5), so we can build a system of linear homogeneous and non-homogeneous equations:

0 0 0 0 00 0 1] [er i
0 0 0 0 00 1 0f|c #

0 0 0 0 020 0f|cs g

0 0 0 0 6000 el |l 5.
1 1 1 1 111 1]|]es i

7 6 5 4 321 0| |e

42 30 20 12 6 2 0 0| |

210 120 60 24 6 0 0 0| |co] | O |

and solve it:

Navigation and obstacle avoidance 26
1
], 2
— ~
{o.a ‘E
E o 15
e]
bD.S %
k) &
£ o4 Z
o ()
> 3
0.2 T 05
0 0
0 0.2 04 .6, 0.8 1 0 0.2 04, .6, 0.8 1
time Ts] time Ts]
(a) Velocity transition from &g to ;. (b) Acceleration transition.
8
40
6
'cvg' 4 ? 20
~ 2 s
) E o
0
% 8
£ 8 20
4
5 40
8
-60
0 0.2 04, .6, 0.8 1 0 0.2 04, .6, 0.8
time Ts] time TS]
(c) Jerk transition. (d) Snap transition.
F1GURE 3.1: An examples of velocity, acceleration, jerk and snap transitions needed
to achieve desired velocity ¢, from initial velocity Zo.
4
co = To
cl = i‘o
1 “ee
1 cees
c3=g%o
(3.7)

Cq = —35j30 - 205)0 — 5.50 — %xo + 35(i1f
cs = 8419 + 45%0 + 102y + Zp — 84$f
cg = —T0i0 — 3630 — L4 — 2o + 704 ¢

cr = 20d + 1020 + 24 + ¢ 2’9 — 20 5.

At the end, by replacing (3.7) in (3.2) and in (3.3), we obtain generic profile functions

for the desired velocity, acceleration, jerk and snap, which depend on initial conditions

(%0, Zo, To, Z°9) and desired velocity &y. In a similar way, the transition functions for y

and z axes can be computed. This method can be also extend for computing the desired

velocity (14) and accelerations (tq) for the yaw orientation.

Nawvigation and obstacle avoidance 27

An example of so obtained transition functions is depicted in Figure 3.1. At the
initial time 79 = Os, the quadrotor is stationary (&g = Om/s, %9 = Om/s?, ¥y = Om/s?,

I'p = 0m/s*) and, at the final time 7; = 1s, it reaches the desired velocity (i = 1m/s).

3.2 Obstacle avoidance

Let consider an Euclidean workspace W = R3, where the robot B C R? is free to
translate. Let O; C W, i = 1,...,p, be the obstacles. Let assume that the geometry
and the position of each O; is known. The obstacle avoidance is the problem of moving
B in W while avoiding collisions with the obstacles O;. The obstacle avoidance problem

is important for mobile robots.

If the quadrotor can be described by a sphere in W, its configuration can be defined
by the Cartesian coordinates of a representative point. Note that the orientation of the
sphere is irrelevant for collision checking. An effective scheme for obstacle avoidance is
obtained by representing the quadrotor as a point in the configuration space C = W,
where the images of the obstacles are also reported. For this reason, it is natural to

choose as the generalized coordinates of the quadrotor:

q:[lh q2 CJ?JT:[!U Yy Z}T, (3.8)

whose values identify the configuration of the robot. Thus, to each configuration q is
associated a point in C and C is the set of all configurations that the quadrotor can

assuine.

In order to find a solution to the obstacle avoidance problem, it is necessary to
convert the obstacles from W in C. Given an obstacle O; in W, its image in C is called
C-obstacle and is defined as in [12]:

CO; = {q eC: B(q) NO; # @} . (3.9)

Thus, CO; contains the configurations that cause a collision between the quadrotor B
and the obstacle O; in the workspace. A growing procedure is applied to obstacles in
W in order to obtain their image in C. In particular, the boundary of CQO; is the set
of configurations that put the quadrotor in contact with the obstacle O;. In our case,
to build CO; it is sufficient to grow O; by the radius of the sphere which describes the

quadrotor. The union of all C-obstacles

Nawvigation and obstacle avoidance 28

p
co=|Jco; (3.10)

=1

defines the C-obstacle region, while its complement

Cpree =C —CO = {qec:B(q)m (O oi) ;é@} (3.11)
=1

is the free configuration space, Cyre. is the subset of C that do not cause collisions with

the obstacles.

3.2.1 Artificial potential fields

The artificial potential fields method provides a simple and effective technique for on-line
obstacle avoidance applications. This approach uses repulsive potential fields around the
obstacles to force the quadrotor move away from them. Essentially in our case, the point
that represents the quadrotor in C moves only under the influence of a repulsive potential
field U, from the C-obstacle region. At each robot configuration q € R™, the robot
experiences a generalized force equal to the negative gradient of the potential —VU,(q),
which indicates the most promising direction for local motion. In obstacle avoidance,
potentials are expressed in the configuration space C of the quadrotor. Each obstacle
O; to be avoided is surrounded by repulsive potential functions. These potentials are
added to form a composite potential and the quadrotor moves in this field of forces. It

is simple to provide a linear control law with constant gain, like the one in (3.1).

The repulsive potential U, is used to prevent the quadrotor from colliding obstacles
as it moves under the influence of the user command. In particular, the idea is to build a
barrier potential in the proximity of the C-obstacle region, so as to push away the point

that represents the quadrotor in C.

For each component CO; define an associated repulsive potential [13]:

k 1 1\7 .
= X - B if i \d S

Upi(a) =3 ” (0 %) W) < (3.12)
0, if n;(a) > no

where k, > 0 is the repulsive gain, v is the potential slope, 1;(q) = ||q — q;|| is the
distance of q from CQO; and 7y is the range of influence of the obstacles. An example of

a repulsive potential field in the two-dimensional configuration space C with a circular

Nawvigation and obstacle avoidance 29

-

ik

Ll I' \‘
000 i n b

IS

potential [J/kg]
w o 8

N
ROCRAK “:“t‘ SRR
"&"0’%‘0:0:0&0:‘:‘“‘\‘\“ <

FicURE 3.2: A repulsive potential field in the two-dimensional configuration space
with a circular obstacle.

obstacle is shown in Figure 3.2 (the potential is limited up to 1J/kg). The potential U, ;

is zero outside and positive inside the range of influence 7y and tends to infinity at the
boundary of CO;.

The repulsive force resulting from deriving (3.12) is

k 1 1 7_1 .
@ (@ ~ Vni(a), ifni(q) <n
Fri(q) = —VUi(q) = { @ (m(Q) ?70) (q) (a) 0

(3.13)
0, if n;(q) > no

The total repulsive force is obtained by adding the individual forces (3.13) associated

with the components of CO; and normalizing over the number of obstacles:

Fi(q) = plf@ (3.14)

The force field F.(q) (3.14) is interpreted as the repulsive velocity ¢, for the quadrotor
[12], by letting

a = Fr(q). (3.15)

This strategy is fast in executing the motion corrections suggested by the force field F;.

and may be considered safer. Using (3.15) guarantees also that in absence of obstacles

Navigation and obstacle avoidance 30

=

FiGURE 3.3: Bounding sphere surrounding schematic quadrotor structure.

the quadrotor has no velocity. In order to calculate the repulsive acceleration q,, jerk

q, and snap 4, (3.15) is derived over time [14]:

.04 04,0a_ .
qr = or 9q ot qrq
.. _3dr_3draq_ ..
U= = aq o VI
_8ﬁ'7«_3d‘,~8q_ e

3.2.2 Application to quadrotor

The C-obstacle region is build in order to ensure the obstacle avoidance having regard to
the overall dimensions of the aircraft, which may be considered contained in a bounding

sphere (as in Figure 3.3) of radius

in which [/, is the length of the quadrotor propeller. The quadrotor can be considered

point-like, if all obstacles are extended using the same bounding sphere of the quadrotor.

Nawvigation and obstacle avoidance 31

As a consequence of this choice, the minimum distance of quadrotor from an obstacle in
the configuration space C depends only on its distance from the position [q: Y z} and

the following relationship is valid:

/ ni(a) — R, ifni(q) >R
0, if m(q) <R

Another consequence of this choice is that the obstacles do not affect the yaw. So the

repulsive force on the yaw is zero under all conditions.

Now, we have to choose how to apply the resulting force F,.(q) generated through
artificial potential field to the quadrotor feedback linearizzation. For this purpose we

T
can define a vector of four repulsive inputs v, = {’UTJ Vr2 Ur3 UrA} :

3

Ur1 = .Ej.r,l + Z kz,qu(n’g
i=1

3 o

vrp = Ao+ k‘y,z'qﬁg
=1

3
Ur 3 = “an,S + Z kz,zqs;)}
i=1
Ur4 = 07
where kg i, ky; and k. ;, i = 1,...,3, are the same as in (3.1). The vector of forces then

enters in the control as desired snap for the position and as desired angular acceleration

of the yaw. At the end, the input law, which commands the linearized system (2.24), is

V =Vg+ V.

Chapter 4

Simulation results

Extensive simulations were made considering different parametric uncertainties. Some
of the obtained results are presented in the following to illustrate the performance of the

proposed controller.

4.1 Numerical simulations

Now, we are going to show some simulations carried out in ® MATLAB about the
controller described so far. ®MATLAB is the high-level programming language and
interactive environment used by engineers and scientists worldwide. It allows to explore
and visualize processes across various disciplines, including signal and image processing,

communications and control systems.

The quadrotor intrinsic parameters are reported in Table 4.1. These parameters

are chosen close to the ones of real quadrotors. The controller gains for (3.1) are chosen

as follows:
Parameter | Value | Unit

b 107 | [N-s%]

d 1077 | [N-m-s?
g 9.81 | [m/s?]
I, 1 [kg - m?]
I, 1 [kg - m?]
I, 1 [kg - m?]

l 0.2 [m]

m 1 [kg]

TABLE 4.1: The quadrotor intrinsic parameters.

32

Simulation results 33

koo = kyo = ks0 = 625
kot = ky1 = ko1 = 500
ko = kyo = kag = 150
kz3 = kys = k23 =20

kyo=ky1 = 4.

The quadrotor is initially in hovering and the initial pose is z(0) = 0, y(0) = 0, 2(0) =0
and ¥ (0) = 0. So, the quadrotor initial state (2.22) is

T
X=|00000O0O0O0O0O0O0O0mgO0

4.1.1 DFL tests

In this subsection we test the DFL controller (2.23) alone. In the first simple case, the
quadrotor follows the circular trajectory. In the second more complex situation, the
quadrotor follows the helicoidal trajectory while pointing towards the direction of the

movement.

Circular trajectory

In this simple case, the reference trajectory is a circle with unitary radius centred in

(0,0,1)m on zy-plane whose equations are given by

T
Yed(t) = |cos(t) sin(t) 1 O] . (4.1)

In order to use the controller in (3.1) we need also the desired velocity, acceleration, jerk

and snap, which can be computed deriving (4.3):

- T
Yealt) = |=sin(t) cos(t) 0 0}
Ved(t) = } cos(t) —sin(t) 0 O}T

r T
Yedlt) = _sin(t) —cos(t) 0 0}

e i T
Y d(t) = cos(t) sin(t) 0 0} :

Simulation results 34

y [m] @ [m]

FIGURE 4.1: 3D plot of circle tracking on xy-plane with DFL.

Figure 4.1 shows in 3D space the realized trajectory (in blue) with the desired one
(in green). We can observe that the two trajectories overlap perfectly. In Figure 4.2 we
can see how z, y, z and 9 converge to the desired values. The trajectories are projected
over four controllable outputs: x (Figure 4.2a), y (Figure 4.2b), z (Figure 4.2¢) and ¢
(Figure 4.2d).

Helicoidal trajectory with variable yaw

In this case, the reference trajectory is a vertical helix centred in x = 0 and y; = 0.
While moving the quadrotor points always towards the direction of the movement. This

trajectory is given by

Yha(t) = [sin(2t) cos(2t) 1+ 5t —2t " (4.2)

In order to use the controller in (3.1) we need also the desired velocity, acceleration, jerk

and snap, which can be computed deriving (4.2):

Simulation results

35

g
— 0
8
-0.5
Al
5 2 4 K 8 10 5 2 4 . 8 10
time [sj time [Sj
(a) Trajectory of . (b) Trajectory of y.
150 0.1
0.08+
0.06+
1
0.04+
- = 0.02}
g £
— 05 —_— 0
N
ﬁ-0 02
-0.04
0
-0.06
-0.08
-0.5 g -0.1 !
0 2 10 2 8 10

: time [st]

(c) Trajectory of z.

: time [sj

(d) Trajectory of 1.

FIGURE 4.2: Tracking of a circle on zy-plane with DFL. Plots of desired (dashed green
line) and realized (solid blue line) trajectories.

Yha(t) = :QCOS(Qt) —2sin(2t) —2}T
Vha(t) = :—4Sin(2t) —4cos(2t) 0 O]T
Via(t) = |-8cos(2t) 8sin(2t) 0 O}T

Y nalt) = :1GSin(2t) 16cos(2t) 0 O]T.

Figure 4.3 shows in 3D space the realized trajectory (in blue) with the desired one
(in green). As we can observe, after the initial transitional part, the quadrotor follows
perfectly the desired trajectory. In Figure 4.4 we can see how x, y, z and ¢ converge
to the desired values. The trajectories are projected over four controllable outputs: x
(Figure 4.4a), y (Figure 4.4b), z (Figure 4.4c) and ¢ (Figure 4.4d). The yaw orientation
1 is defined between 0 and 27 (cyan dotted line in Figure 4.4d). By the definition of

Simulation results 36

y m] @ [m]

FIGURE 4.3: 3D plot of vertical helix tracking with DFL.

manifold!, 0 is a neighbourhood of 2. So after a complete rotation the orientation goes

back to 0 or to 2.

4.1.2 Obstacle avoidance tests

In this subsection we test the behaviour of the quadrotor under the influence of artificial
potential fields (3.13). First, we show the case with only one obstacle. After while, the

scenario with multiple obstacles and a driven command will be presented.

Single obstacle

In this simple case, the quadrotor workspace YW C R? and contains only one circular
obstacle with radius of 1m and situated in (1,1)m. The quadrotor starts in (0,0)m and

has no external commands from the operator.

The artificial potential field related to the obstacle is the one depicted in Figure 3.2.

The reaction of the quadrotor to the obstacle (red area) is shown in Figure 4.5. In the

LA manifold is a topological space in which each n-dimensional point has a neighbourhood that is
homeomorphic to the n-dimensional Euclidean space.

Simulation results

g
— 0
>
-0.5
s
15 : : : ; 15 : : . ;
0 2 4 tlme [Sj 8 10 0 2 4 tlme [Sj 8 10
(a) Trajectory of . (b) Trajectory of y.
0 2 4 time [Sj 8 10 0 2 4 tlme [sj 8 10
(c) Trajectory of z. (d) Trajectory of .

FIGURE 4.4: Tracking of a vertical helix with DFL. Plots of desired (dashed green line)
and actual (solid blue line) trajectories.

FIGURE 4.5: Reaction of the quadrotor to the obstacle.

Simulation results 38

/t/’n’ }
“\ 0 ".’ OO0

™
e

Hanl
\§\\\\ - i lJlll"',"" ' " ‘

potential [J/kg]
o

FIGURE 4.6: Artificial potential field related to the obstacles and to the command.

absence of the commands the quadrotor simply moves away from the obstacle, since it
goes out of obstacle’s range of influence (red dotted curve). The blue line represents the

path of the quadrotor connecting initial and final positions.

Multiple obstacles and command

As in the previous case, the quadrotor workspace W C R?, but contains two circular
obstacles: the first one has radius of 1m and situated in (1,1)m, the second one has
radius of 2m and situated in (8, —2)m. The quadrotor starts in (0,0)m and has the

constant positive commands from the operator along z-axis of 1m/s.

The artificial potential field related to the obstacles and to the command is depicted
in Figure 4.6. The quadrotor can be imagined as a ball which moves under the action of
the gravitational force. The white curve connecting initial and final positions represents

the movement of the quadrotor.

The reaction of the quadrotor to the obstacle (red area) is shown in Figure 4.7. In
the absence of the commands the quadrotor simply moves away from the obstacle, since
it goes out of obstacle’s range of influence (red dotted curve). The blue line represents

the path of the quadrotor connecting initial and final positions.

Simulation results 39

N w »
T

y [m]

'] 1 ' '
(2] a » w N
T

z [m]

FIGURE 4.7: Reaction of the quadrotor to the obstacle.

4.1.3 DFL with obstacle avoidance tests

Now, we can perform a complete simulation with DFL controller and obstacle avoidance.
The desired trajectory is a unitary circle with fixed height centred in (0,0,1)m on zy-
plane. In addition, the quadrotor has to be oriented towards the center of the circle. So,

the equations of the desired trajectory are given by:

T
yc,d(t)Z[cos(Zt) sin(2¢) 1 2t+7| . (4.3)

In order to use the controller in (3.1) we need also the desired velocity, acceleration, jerk

and snap, which can be computed deriving (4.3):

- T
Ved(t) = _—2 sin(2t) 2cos(2t) 0 2}
Ved(t) = :—4 cos(2t) —4sin(2t) 0 O] !

- T
Yedlt) = _8sin(2t) —8cos(2t) 0 0}

seee r T
Y ca(t) = |16 cos(2t) 16sin(2t) 0 0} :

Simulation results 40

2

F1GURE 4.8: 3D plot of circle tracking in presence of an obstacle.

Furthermore, in the quadrotor’s workspace W C R? are present two spherical
obstacles with radius of 0.5m and situated in (—1,0,1.5)m and in (1,1,1)m. So, the

quadrotor’s path intersects the obstacles.

Figure 4.8 shows in 3D space the realized trajectory (in blue) with the desired one
(in green). We can observe that the two trajectories overlap perfectly due to the presence
of the obstacles. The top view of the motion is reported in Figure 4.9. In Figure 4.10 we
can see how x, y, z and v converge to the desired values. The trajectories are projected
over four controllable outputs: z (Figure 4.10a), y (Figure 4.10b), z (Figure 4.10c) and
¢ (Figure 4.10d).

4.2 Dynamical simulations

After the development of the numerical tests, the quadrotor was implemented in Robot
Operating System (ROS) and in GAZEBO. On the one hand, ROS is a flexible framework
for writing robot software. It is a collection of tools, libraries, and conventions that aim
to simplify the task of creating complex and robust robot behaviour across a wide variety
of robotic platforms. On the other hand, Gazebo offers the ability to accurately and

efficiently simulate populations of robots in complex indoor and outdoor environments.

Simulation results

41

s

1. 1 . 1
§2 -1.5 -1 -0.5

Y .05 1 15 2
2 m)]

F1GURE 4.9: Top view of circle tracking in presence of an obstacle.

15 : : . : , 15 . : . ‘
0 2 4 tlme [Sj 8 10 0 2 4 tlme [Sj 8 10
(a) Trajectory of x. (b) Trajectory of y.
150
o
1
El
— 05
N
0
05 ‘ ‘ ; : ’
0 2 4 time [Sj 8 10 0 2 4 tlme [sj 8 10
(c) Trajectory of z. (d) Trajectory of .

FIGURE 4.10: Tracking of a circle in presence of an obstacle. Plots of desired (dashed
green line) and realized (solid blue line) trajectories.

Simulation results 42

FI1GURE 4.11: CAD model of Pelican quadrotor with Kinect depth sensor.

It has a robust physics engine, high-quality graphics, and convenient programmatic and

graphical interfaces.

In order to perform dynamical simulations the 3D CAD model of Pelican quadrotor
with Kinect depth sensor was built (Figure 4.11). For the dynamical simulation we need
to recompute the dynamic parameters of the quadrotor. The quadrotor’s body can be
decomposed in a set of cuboids and cylinders. The inertia matrix (2.6) for a cuboid of
width weyp, height hAcyp, depth deyp and mass meyp is computed in Appendix C.1 and is

given by

IC“b = 1C2“b 0 wzub + dgub 0
0 0 wgub + h’zub

The inertia matrix (2.6) for a cylinder of radius r.,;, height h.y and mass me, is com-

puted in Appendix C.2 and is given by

Simulation results 43

kinect
depth_image_to_point_cloud

/kinect/depth_image | | /[repulsive_jerk
/depth_image_to_point_cloud
-< /point_cloud

/kinect/camera_info
- vtol APF
— R e
/Kinect/image_raw/compressed H———* /vtol/optical_flow — [linear_velocities S//._py | frep ive_velocity

L]
t L

P e

/gazebo /gazebo/model_states

teleop_key

FI1GURE 4.12: Block diagram of ROS nodes and ROS topics.

/keyboard_command

- 3r, + hiy 0 0
_ %y
0 0 612,

In Figure 4.12 is shown the block diagram of ROS nodes and ROS topics cre-
ated with rqt_graph, which provides a visualization of ROS computation graph. The
block labelled GAZEBO simulates the environment, the quadrotor and laser sensor.
While the environment and the quadrotor are displayed in the graphical simulator, the
data collected by the sensor are published on corresponding topic. The block Feedback
Controller, implemented in C++4, calculates the motors angular velocities required to
perform the command and applies them to the quadrotor in the simulated environment
via GAZEBO’s APIL.

In dynamic simulations, as in real situations, we do not use x and y position of
the quadrotor. The height we measure with the simulated sonar. The velocities along
zr-axis and y-axis we get from optical flow, which uses the images from simulated ver-
tical camera. The velocity along z-axis is obtained from the derivative of the height.
GAZEBO does not allow to access to the object’s acceleration, so this value is computed
analytically from the dynamic model (2.9) of quadrotor, as well as its jerk. We can get
attitude and angular velocities directly from GAZEBO and we add to them white Gaus-
sian noise. However, in the simulations made in GAZEBO we found that the integration
engine creates a large numerical noise. This behaviour is well visible analysing the trend
of the angular velocity. In order to obtain the point cloud of the environment, we use a

simulated 3D sensor.

Simulation results 44

4.2.1 Circle tracking

In this subsection we test the DFL controller (2.23). The task of the quadrotor is to
follow the circular trajectory. In addition, the quadrotor has to be oriented towards the

center of the circle. So, the equations of the desired trajectory are given by:

T
Yealt) = [cos(t) sin(t) 1 2t 47| . (4.4)

In order to use the controller in (3.1) we need also the desired velocity, acceleration, jerk

and snap, which can be computed deriving (4.4):

- T
Ved(t) = - sin(t) cos(t) 0 2}
Vealt) = :— cos(t) —sin(t) 0 0} !
Yea(t) = :sin(t) —cos(t) 0 O}T

- - T
Yedlt) = _cos(t) sin(t) 0 0} .

But since we do not use the quadrotor position x and ¥, in order to correct its trajectory,

we have to take into account the initial conditions at t = 0 for xz-axis and y-axis:

zeq(0) =1 Ye,d(0) =0
dcd(0) =0 Yed(0) =1
ica(0) = —1 and Jed(0) =0
Tea(0)=0 Yea(0) = -1
@ed(0) =1 Yea(0) =0

Therefore, we need to reach these conditions before starting to follow the trajectory. To

this purpose we use two nonic polynomials® as transition functions for z and ¥:

9 9
Tea(T) = Z CaiT' and Yed(T) = Z CyiT',
=0 =0

2 Nonic polynomial is a polynomial that has 9 as the highest exponent of its terms.

Simulation results 45

15 5
1 81
— ~
z £
E 05 o 0.5
—)
& g
B o S 0
Q =
E 5
> 05 S 05
s
1 1
5 2 3 4 5 6 % 1 2 3 4 5 6
time [s] time [s]
(a) Velocity transition from &g to ;. (b) Acceleration transition.
15 5
1 1
= 3,
QO.S { 05
g £
VR 0
4 =
<
g g
L g
-0.5 -0.5
1 1
18 1 2 3 4 5 6 % 1 2 3 4 5 6
time [s] time [s]
(c) Jerk transition. (d) Snap transition.

F1GURE 4.13: An examples of profiles of transitory velocities, accelerations, jerks and
snaps needed for circle tracking. The red curves are functions on z-axis and the blue
curves are functions on y-axis.

in which ¢, ; and ¢y 3, 7 = 0,...,9, are coefficients to be adequately chosen and 7 € [0, 27]
is normalized time. We proceed as described in Subsection 3.1.2, in order to find c;;
and ¢y, i = 0,...,9. The resulting profiles of transitory functions are depicted in
Figure 4.13: velocities (Figure 4.13a), accelerations (Figure 4.13b), jerks (Figure 4.13c)
and snaps (Figure 4.13d). Note that at time 7 = 27 we have the discontinuities of the

second order.

Figure 4.14 shows the realized trajectory on xy-plane (in blue-red) with the desired
one (in green). In Figure 4.15 we can see the behaviour of the single components: x
(Figure 4.15a), y (Figure 4.15b), z (Figure 4.15¢) and ¢ (Figure 4.15d). We can note
that « and y diverge, it is caused by the absence of reference of x and y positions. On
the other side, z remains on its initial and desired value and 1 converges to the desired

orientation.

Simulation results

46

N

FI1GURE 4.14: 3D plot of circle tracking on zy-plane with DFL.

1.5 -1.5
% 5 10 15 20 % 5 10 15 20
time [s] time [s]
(a) Trajectory of x. (b) Trajectory of y.
15¢
141 6
1.3} 5
12r
1.1 %47
&, £,
® =
09r
Al
0.8
07 r
06 o
0% 5 10 15 20 0 5 10 15 20
time [s] time [s]
(c) Trajectory of z. (d) Trajectory of .

FIGURE 4.15: Tracking of a circle on zy-plane with DFL. Plots of desired (dashed
green line) and realized (solid blue line) trajectories.

Simulation results 47

FIGURE 4.16: Top view of a small labyrinth and quadrotor’s path (blue curve).

4.2.2 Travelling in labyrinth

Now, we want to make the quadrotor travel in a small labyrinth depicted in Figure 4.16
without hitting walls. By imposing a command from the operator the quadrotor moves
in the desired direction avoiding the obstacles. The quadrotors always points toward

the direction of the desired motion. This is obtained by setting:

Yq = atan2(yq, £q),
where atan2 is defined in (—m, 7| and can be expressed as follows:
arctan?, ifz>0

arctan? 47, ify >0and z <0

arctan? — 7, ify <0and z <0

atan2(y,) = :
R ify>0and z=20
— 5 ify<Oandz=0
0, ify=0and z=0

In this simulation, the robot starts in the big left room (as shown in the figure) and

successfully reach the right part of the labyrinth.

Chapter 5

Experimental results

In this chapter will be introduced the entire set-up developed in order to perform ex-

periments.

5.1 Hardware system

Entire set-up comprises flying system which represents the quadrotor with its sensors
and remote ground station used for controling the quadrotor and for setting the on-board

parameters.

FI1GURE 5.1: AscTec Pelican quadrotor.

48

FExperimental results 49

Parameter Value

Size 651x651x188 mm

Engines 4 electrical, brushless motors

Rotor diameter 254 mm

Empty weight 620 g

Mazimum payload 650 g

Flight time (with payload) 16 min

Maximum range 1000 m

Mazimum airspeed 16 m/s

Mazimum climb rate 8 m/s

Mazimum thrust 36 N

Wireless communication XBee: 2,4 GHz, WiFi

Inertial guidance system AscTec AutoPilot with 1,000 Hz update rate
On-board computer 3rd Generation Intel®CoreT™i7 processor

TABLE 5.1: Technical data of AscTec Pelican quadrotor.

5.1.1 Quadrotor

Aircraft used to develop the experimental set-up is the Asctec Pelican quadrotor de-
picted in Figure 5.1. The AscTec Pelican is the packhorse amongst AscTec’s Research
Line UAVs. This quadrotor offers plenty of space and various interfaces for individual
components and payloads. The two-time International Aerial Robotics Competition
champion is the key to unlimited experiments. High quality standards in production
guarantee reliability and safety of this aerial robot. The technical data of AscTec Peli-

can quadrotor are reported in Table 5.1.

Asctec Pelican essential characteristics:

e The inertial guidance system provides highest precision through advanced sensor

components and two ARM7' microprocessors.

e The control unit provides highest flexibility. Latest interfaces simplify the imple-

mentation of C-code algorithms.

e The Low Level Processor (LLP) ensures a highly stable flight behaviour of the
flight system. The LLP is the data controller which processes all sensor data and

performs the data fusion of all relevant information with an update rate of 1 kHz.

e The High Level Processor (HLP) takes control over the flight system according to
the C-code algorithms.

1 ARMT is a group of older 32-bit ARM processor cores.

Ezperimental results 50

FIGURE 5.2: ASUS Xtion PRO LIVE.

e Safe testing thanks to the Safety Switch function. While testing control commands
and manoeuvres, one can simply switch back into safe mode and the AscTec Au-

toPilot takes back the control.
e The energy-efficient engines work with only 100 Watt per motor.

e The AscTec Pelican is proven and tested as a useful research tool in challenging

conditions.

e The possibility of receiving quadrotor status via a serial port makes this platform

an excellent base to start developing autonomous behaviours.

5.1.2 RGB-D sensor

The ASUS Xtion PRO LIVE (in Figure 5.2) is the world’s first and exclusive professional
PC motion sensing development solution. Its multiple sensing functions makes devel-
opment easier. The Xtion uses infra-red sensors, adaptive depth detection technology,
color image sensing and audio stream to capture a real-time image, movement and voice.
The Xtion development solution comes with a set of developer tools to make it easier
for developers to create their own depth-based applications without the need to write
complex programming algorithms. In addition, with Xtion PRO series, developers are
offered more options and tools to develop their own applications. The technical data of
ASUS Xtion PRO LIVE camera are reported in Table 5.2.

ASUS Xtion PRO LIVE essential characteristics:

e The Xtion PRO LIVE development solution allows developers to track a move-

ment, which makes it ideal for controlling.

e Xtion PRO LIVE enables color (RGB) image sensing. With RGB, Xtion PRO

LIVE can capture the image, which is useful for many applications.

Ezperimental results 51

Parameter Value

Size 180x35%x50 mm

Power consumption <25 W

Distance of use 0,8m — 3,5m

Field of view horizontal: 58°, vertical: 45°, diagonal: 70°
Sensors RGB camera, depth camera, 2xmicrophone
RGB image size SXGA (1280x1024): 30 fps

Depth image size VGA (640x480): 30 fps, QVGA (320%x240): 60 fps
Platforms Intel X86, AMD

Interface USB 2.0, USB 3.0
Programming languages CH++, C#, Java

Operation environment indoor

TABLE 5.2: Technical data of AscTec Pelican quadrotor.

a) A

n example of RGB image. (b) An example of depth map.

FIGURE 5.3: An example of raw data from ASUS Xtion.

e The Xtion PRO LIVE development solution allows developers to apply the latest
depth-sensing technology in various applications. The Xtion PRO LIVE develop-
ment kit is widely open. One can create his own applications more convenient and

intuitive.
e The Xtion PRO LIVE has an easy plug and play USB design.

e The Xtion PRO LIVE is OPENNI compatible.

ASUS Xtion provides simultaneously 1280 x 1024 RGB video stream at 30 Hz rate
(Figure 5.3a) and a 640 x 480 pixel monochrome intensity coded depth map? at 30 Hz
(Figure 5.3b). Low cost, reliability and speed of the measurement promises to make

Xtion the primary 3D measuring devices in indoor robotics, 3D scene reconstruction

2 Depth map is an image that contains information relating to the distance of scene objects from a
viewpoint.

Ezperimental results 52

F1cURE 5.4: The point cloud reconstructed from the RGB image in Figure 5.3a and
the depth map in Figure 5.3b.

and object recognition. This device connects using USB 2.0 or USB 3.0 interface3. The

protocol to access the Xtion data is open? and a software to read them already exists.

Main raw output of ASUS Xtion is an image that corresponds to the depth in the
scene. Rather than providing the actual depth Z, Xtion returns inverse depth. Com-
putation of depth maps can be grouped into passive or active methods. Passive depth
sensing tries to infer depth from multiple cameras or images, for example, through stereo
correspondence algorithms or optical flow. Active methods usually employ additional
physical sensors such as lasers, structured lighting, or infra-red illumination cast on the
scene. Xtion uses a form of structured light®. Depth sensor consists of an infra-red laser
projector combined with a monochrome CMOS sensor. Spatial resolution (X and Y') of
the depth sensor at 2 m from the it is 3 mm, while the depth resolution (Z) at the same

distance is 10 mm.

In order to obtain a point cloud from the depth map, we use the algorithm described
in Appendix D. Figure 5.4 shows the point cloud reconstructed from the RGB image in
Figure 5.3a and the depth map in Figure 5.3b. In our application we build the colorless

point cloud, thus we do not need the informations from the RGB camera.

3 Additional current is not required.
4 OpenNI SDK is bundled.
® Developed and patented by PrimeSense.

FExperimental results 53

N

o

o
1

-

(0]

o
T

— —
N (e))
o o
T
\
\

AN
N
AN

Motor Speed [AscTec units]
N

AN

20 /

10000 20I00 30100 40I00 50I00 60I00 7OI00 OLOO QOIOO
Motor Speed [rpm[]

F1cURE 5.5: Correspondences between AscTec motor velocity and real angular velocity
and the corresponding regression line.

5.2 Parameters estimation

5.2.1 Speed conversion

AscTec Pelican quadrotor low level controller treats the motors velocity as an positive
integer between 0 and 200 (0 is the minimum speed and 200 is the maximum speed). To
estimate the conversion factors from the real motor angular velocity wrpyr expressed in
rotation per minute to the AscTec motor velocity war, we directly set the motor turning
speed in AscTec units and measure the resulting turning speed with a laser tachometer.
After a batch of sixteen measurements was collected {(wrpars, , wAT,) ;- - -, (WRPM, s, WAT 6) }+

we noticed that the transformation is linear (shown in Figure 5.5):

war = kiwrpym + ko,

so the linear regression was applied®:

6 AT indicates the pseudo-inverse of matrix A.

FExperimental results 54

+
- 1 wrpMm, wAT
[ko] B : :

|
1 wWrPM, WATg
We obtained kg = —29,92 and k1 = 0,027 and are the same for four motors. Afterwards

these values were confirmed by AscTec.

5.2.2 Thrust coefficient

Once we are able to convert the motor angular velocity from AscTec units to rotation
per minute, we can proceed with the estimation of the propellers thrust coefficient b.
To estimate b we replace the first equation from 2.2 into the seventh, eighth and ninth

equations from 2.9 and we obtain

1
g = —— (cos ¢ cos Y sin @ + sin ¢sin) (bwi + bws + bw? + bw?)
1
ay=—— (cos ¢sinypsin — cos v sin @) (bwi + bws + bw? + bwy) (5.1)

1
a, = ——cos¢cosf (bw% + bw? + bw? + bw?) +g.
m

Extracting b from 5.1, we can compute it:

+
(cos ¢ cos 1 sin O + sin ¢ sin) (w%—i—w%—i—wf—kw?) Oy
b=—m |(cos@sintsinf — cos¢sin¢) (w} + wi + w? + w?) Qy

cos pcosf (wi + wi + w? + w?) a,—g

We collected a batch of h measurements’ @15, @oi, @3i, Qai, Pis Oiy Vi, Qg;, Ty,

and @, from the UAV’s IMU and Autopilot. Finally, stacking up 3h equations we can

estimate b:

" @ indicates the estimated value of a; @ indicates the measured value of a.

FExperimental results 55

- =1+ r -

(cos qgl cos 1/;1 sin @ + sin &1 sin 1/;1) (d}i + @%1 + &)gl + @zl) Gy,
(cos ¢1 sin) sin 1 4 cos 1y sin gbl) (d)fl + (Zzgl + Jjgl + d}il) ay,
cos ¢y cos by (0F, + @3, + @3, + @3,) ay + g
b=nm :
(cos b1, €os Yy, sin By, + sin ¢y, sin @h) (G)fh + df%h + d%h + G)Zh) g,
(cos op, sin Yy, sin 0y, + cos Yy, sin ¢h) ((D%h + @%h + d}%h + (Z)zh) Gy,
I cos ¢y cos Oy (@F, + @3, + @3, +@F,) 1] |8z + 9]

With the help of Matlab we obtain that b= 2,1-107°N - s2.

If we want to compute the thrust factors individually for each propeller by, bo, b3

and by, instead of the first equation of 2.2, we have to consider the following one

T = biw? 4 bow3 + bsw3 + baw?,

which gives us

1

a; = —— (cos ¢ costsinf + sin P sin 1) (blw% + bow? + baw? + b4wz~2)
m
1

ay = —— (cos ¢sine) sinf — cos ¢ sin @) (blw% + bows 4 bsw? + b4wl~2)
m

1
a; = —— cos ¢ cos 6 (blwf + bows + bsw? + b4wi2) +9,

from which we can extract by, by, b3 and b4 and then estimate 51, 52, 53 and 54 as showed

before. Again with the help of Matlab we obtain that 51 ~ 52 R 53 R 54 ~2,1-107°N - s2.

5.2.3 Drag coefficient and moments of inertia

Once we have the thrust coefficient b, we can proceed with the estimation of the quadro-
tor moments of inertia I, I,,, I, and propellers drag coefficient d [15]. To estimate I,
I, I, and d we replace the last three equations from 2.2 into the last three equations

from 2.9 and obtain

FExperimental results

56
. I, -1 —1bw3 + 1bw?
= r
p I, q I,
I, -1 —lbw? + lbw}
Gg=2""pr+ wi ey (5.2)
I, I,
I —1 dw? — dw3 + dw3 — dw}
P yqur w7 w5 + adwsj w4'
I, I
Extracting I, I, I, and d from 5.2 we can write:
M
Im -pqr —qr 0 w3 — wj
l=bl-pr =i pr 0 wi —wj
I, : 2 2 2 2
g pg —pq —T wi—w;twy—w 0

We use the batch of h measurements collected from the UAV’s IMU and Autopilot

for the thrust estimation in Subsection 5.2.2. Finally, stacking up 3h equations we can
estimate fm, fy, fz and d:

—p1
—p1T1

D1q1

!

8

i

<

=1b

!

*én
_ﬁnfn

| Pnin

SN

Qi
—q1
—P1q1

GnTn
_q'n
_pn(.?n

—q17T1
D1

_721

- Qn 'Fn
DnTn

0 05 — @f,
~%1 - (’D?2>1

@ — @5 + @3, — @F) 0
5, — @i,
07, — @3,
wf —@3 +@3 —@3 | | 0]

With the help of Matlab we obtain that I, = 1,3 - 10~%kg - m?, fy =1,2-10"2%kg - m?,

I,=2,2-10"%kg - m?2 and d=7,5-10""N - m - s2.

If we want to compute the drag factors individually for each propeller di, dso, ds3

and dy, instead of the last equation of 2.2, we have to consider the following one

and therefore we obtain:

Ty = dlw% — dgwg + dgwg — d4wi

FExperimental results 57

L-rI N —1bw? + lbw?

p=—7 1 I,
. L1, —lbw? + lbw?
G=—7 P+ I
I, -1, dlw% — dgw% + d3w§ - d4wZ
= ——Dpq+ s
I, I,

from which we can extract I, I, I., di, do, d3 and ds and then estimate fm, fy, I;,
ch, JQ, Jg and J4 as showed before. Again with the help of Matlab we obtain that
the estimated inertia matrices do not change and the drag factors are slightly different
d~1 mdNQmczgmcz4m7,5-10*7N~m-SQ.

5.3 Data filtering

5.3.1 Median filter

When the quadrotor crosses over a step even small, the sonar mounted on the quadrotor
does not receive back the bounced ultrasound signal. As a consequence, it generates

spikes. In order to remove these spikes we use the median filter.

We collect the last h + 1 raw readings {Zx_p, ..., Zx} from sonar. After while, the

estimated quadrotor height Z; at current instant k is

Z = median({Zx_p, ..., 2k }),

where median() is a function that computes the median® value. This filter is able to
eliminate up to L%J spikes. The computational cost of this filter is O(hlogh), because

we need to sort the array of h + 1 elements to compute the median.

In Figure 5.6 is shown the row signal from sonar (blue curve) and the filtered one
(red curve). The filter uses a window of the last eleven values, so it is able to eliminate

up to 5 consecutive spikes. We can observe that the filtered height is not delayed.

& The median is the number separating the higher half of a vector from the lower half.

FExperimental results 58

0 5 1I0 15 20
time [s]

FIGURE 5.6: An example of raw quadrotor height from sonar (blue curve) and filtered
value (red curve).

5.3.2 Average filter

The quadrotor angular velocities in body frame p, ¢ and r from on-board IMU are very
noisy. In order to use these data we need to remove noise. To this purpose we use the

moving average filter.

We collect the last h + 1 raw readings {px_p, ..., Pr} from the IMU. After while,

the estimated angular velocity pi at current instant k is

k _
B = 2 izk—nDi
T her
In a very similar way we can compute also g and 7. If {tx_p, ..., tx} are the times when

. . 0,44294h
the measurements were taken, the cut-off frequency of this filter is o —trn\/RETTR m[Hz]

and its delay is %[S] The computational cost of this filter is O(h), due to the sum
of h + 1 elements.

In Figure 5.7 is shown the row signal from IMU (blue curve) and the filtered one
(red curve). The filter uses a window of the last five values, so its cut-off frequency is
7,487 Hz and its delay is 20 ms.

FExperimental results 59

ii H“llql\l” ik LU il

ool } ﬂ

| ll[]” yj|l| I

1 I I I)
0 0.5 1 1.5 2

time [s]

FIGURE 5.7: An example of raw quadrotor angular velocity from IMU (blue curve)
and filtered value (red curve).

5.3.3 Polynomial fitting

The quadrotor linear accelerations a;, a, and a, from on-board accelerometers are noisy.
In order to use these data and to compute the corresponding jerks j., j, and j. we use

the polynomial fitting.

We collect the last h + 1 raw readings {ax—_p, ..., ar} given by the accelerometers.
After while, we try to fit a quadratic polynomial (parabola) f(t) = cat? + cit + co with

collected values a;. To this purpose we use a linear regression:

2 T
co 1 k—h (k—h) e
al=l: . .

C2 1 k k2 ajg

and we find the polynomial coefficients ¢g, ¢1 and co. Now we can compute the estimated

acceleration a; at current instant k:

ap = f(k) = cok?® + c1k + co.

If {tx_p,...,tx} are the times when the measurements were taken, the delay of this
filter is %[8] But the computational cost of this filter is O(h?), due to the pseudo-

inverse of (h + 1) x 3 matrix. In order to improve the computation, we translate the

FExperimental results 60

1 I | | |

0 0.5 1.5 2

time [s]

FIGURE 5.8: An example of raw quadrotor acceleration from accelerometer (blue curve)
and filtered value (red curve).

current instant £ to 0. We can observe that the computation of coefficients ¢y, ¢; and

¢ becomes:

co 1 —h h? Q(—p)
Cc1| = :
C2 1 0 0 ao

Now the matrix which must be pseudo-inverted is constant. So we have to compute the

pseudo-inverse only once. Actually, to compute a, we need only one coefficient c¢y:

a = f(k)|y—o = co-

In Figure 5.8 is shown the row signal from accelerometers (blue curve) and the
filtered one (red curve). The filter uses a window of the last eleven values, so its delay

is 50 ms.

Having the analytical expression of acceleration in the neighbourhood of 0, we can

compute the estimated value of jerk in k:

Ezperimental results 61

20r

101

N

Jz [m/s?]

e
] | ’,MW]T"M‘L‘L‘ “% | H I r

-10F

15

2% 05 R 15 2
time [s]

FIGURE 5.9: An example of numerical derivative of jerk (blue curve) and derivation of
jerk with polynomial fitting method (red curve).

In Figure 5.9 is shown the numerical derivative of jerk (blue curve) and derivation of

jerk with new polynomial fitting method (red curve).

Chapter 6

Conclusions

In this study we presented the solution of ensuring a safe navigation in an unknown
environment for a quadrotor vehicle. First of all, we derived a quadrotor model, to
which we applied a controller based on dynamic feedback linearization. Hence, the main
task was to perform effective obstacle avoidance method. Moreover, we relied on the
classical obstacle avoidance technique which uses artificial potential fields. In a first
moment, we considered the hypotheses of quasi-stationary flight and we showed that
the closed-loop behaviour of the resulting linearized system is not acceptable. Thus,
we considered the use of a first-order feed-forward computing suitable inputs for the
controller. At the end, we obtained a control framework which ensures the feasibility of
the commanded trajectory for the original system. Finally, the proposed control schemes

were validated in simulation and on an experimental quadrotor.

The most important limitation of the proposed controller is the requirement to
measure all the state. Therefore, a Kalman filter can be implemented for more precise
quadrotor state estimation. Moreover, in order to obtain the quadrotor position and
linear velocity, the Vicon system can be used. Furthermore, to improve the stability of
the UAV, we need better estimation of its intrinsic parameters (inertia matrix, thrust
and drag coefficients). Alternatively, we can use well known and widely used geometric
controller on SE(3)[16].

62

Appendix A

Rotation matrix

The rotation of a rigid body in space can be parametrized using three Euler angles.

These angles are individually called roll (¢), pitch (#) and yaw (v).

Considering a right-hand oriented coordinate system, the three single rotations are

described by:

e R(z,¢) is the rotation around z-axis by ¢;
e R(y,0) is the rotation around y-axis by 6;

e R(z,7) is the rotation around z-axis by).
They are represented by:

1 0 0
R(z,¢) = [0 cos¢ —sing|,
0 sing cos¢

cosf O sinO-
R(y,0) = 0 1 0

—sinf 0 cosf

and

cosy —siny 0
R(z,¢) = |sinyy cosyp 0
0 0 1

63

Rotation matrix 64

The complete rotation matrix is the product of the previous three successive rota-

tions:

R(¢,0,¢) = R(z,¥)R(y,0)R(z, 9)
coscosh cossingsinf — cos¢siny sin ¢ siny + cos ¢ cos 1 sin f
= cosfsinty cos@cosy +singsiny sind cos @ siny sin) — cos i sin ¢
—sin6 cos fsin ¢ cos ¢ cos 0

(A.1)

A.1 Derivative of rotation matrix

Let’s consider a time-varying rotation matriz R from a static frame A to a rotating
frame B. Let pg be a fixed point in frame B and p4 be the same point in frame A.
Then

pA = Rps. (A.2)
The time derivative of p4(t) is
p4 = Rps. (A.3)
T
If the vector w = [wz Wy wz} denotes the angular velocity of frame B with

respect to the frame A at time ¢, it is known from mechanics that

PA=w X Py =[w|xPA, (A.4)

in which [w]x denotes the skew-symmetric matriz, given by

0 —W, Wy
—Wy Wy 0

Combining the (A.2), (A.3) and (A.4) gives

Rps = [w]xpa = [w]xRps. (A.6)

Rotation matrix 65

Since pp is chosen arbitrarily, the above equation holds for all pp. Hence, (A.6)

can be rewritten as

Appendix B

Lie derivative

Consider a scalar function h : D C R* — R, a vector field f : D C R” — R™ and a
vector x € D. The Lie derivative of h with respect to f, denoted Lh, is given by

Lih(x) = O j(x)

Given two vector fields f,g: D C R — R", we have that

O(L+sh
Ly L) = L)) = 22 g (B.1)
and in the special case f = g (B.1) becomes
A(Lsh
LyLgh(x) = L3h(x) = %Xf)f(x).

66

Appendix C

Inertia matrix

Let I be the inertia matrix given by

The quantities I., Iy, and I.. are called moments of inertia with respect to the z,
y and 2z axis, respectively. The moments of inertia are the sums of all the elemental

particles masses multiplied by their squared distance from the rotational axis and are

given by
N M
Iy = Z (yz2 + zf) m; = / (y2 + 22) dm, (C.1)
i=1 0
N M
Iy, = Z (2 + 22)m; = / (2 + 2%) dm (C.2)
i=1 0
and
N M
I.= Z (27 + y?) m; = / (z* + y?) dm. (C.3)
i=1 0

The quantity in the integrand is precisely the square of the distance to the x, y and
z axis, respectively. It is also clear, from their expressions, that the moments of inertia
are always positive. The quantities Iy, I, Iyz, Iyz, 1., and I, are called products of

inertia. They are given by

67

Inertia matrix 68

N M
Ixy = Iyx = - Z$1yzmz = / (‘Ty) dma (C4)
i=1 0

N M
I,=1,,=— Z%szz = —/ (xz)dm,
i=1 0

and
N M
I, =1,=— Zyizimi = —/ (yz)dm.
i=1 0

C.1 Solid cuboid

Lets compute the inertia matrix I.,; of a solid cuboid. The cuboid length is X along

the z-axis, Y along the y-axis, Z along the z-axis and its mass is M.

From the definition of mass M:

M = pV

and from the definition of cuboid volume V

V=XYZ,

we have

M = pXYZ, (C.5)

where p is the cuboid density. The derivative of (C.5) is

dm = pdzdydz. (C.6)

Replacing (C.6) in (C.1), one can compute the moment of inertia about the z-axis I,,:

Inertia matrix 69

y - / / / y —i—z)dxdydz
gy)3

(Xy3z XYZ3>
=p

12+12

Inverting (C.5), one obtain p:

and replacing it in (C.7) gives

M

Y2+ 7%).

The other two moments of inertia I, and I.. can be computed in a similar way by using
(C.2) and (C.3). Thus,

M
Ly, = 12 (XQ + Zz)

and
M
L.=15 (X*+Y?).

In order to compute the zy and yx products of inertia, (C.4) is used:

T[T (2
Ixy—/z/y/x (zyp) dzdydz = 0.
-3/-3/-3

2
Similarly, I, and I,. are 0.

Finally, the inertia matrix of a cuboid is

Y? 4 72 0 0
M 2 2
0 0 X% 4+Y?

Due to the symmetry of the cuboid, its inertia matrix I.,; is diagonal.

Inertia matrix

70
C.2 Solid cylinder

Lets compute the inertia matrix I, of a solid cylinder. The cylinder’s height is H, its
radius is R and its mass is M.

From the definition of mass M:

M = pV

and from the definition of cylinder’s volume V'

V = 7R%H,
we have
M = npR*H, (C.9)
where p is the cylinder density. The derivative of (C.9) is
dm = 2mpRdrdh. (C.10)

Replacing (C.10) in (C.1), one can compute the moment of inertia about the x-axis I,:

4 R
I, = / ’ ((7‘2 + h2) 27rpR) drdh
Yy)
2 (C.11)
_ RH N R?H?
T\ 12)
Inverting (C.9), one obtain p:
M
P = TRZH

and replacing it in (C.11) gives

Mo
Im_12 (3R*+ H?) .

Inertia matrix 71

The moment of inertia about the y-axis I, is equal to I,;, because the symmetry of the

cylinder. Thus,

M
Ly = 75 (3R* + H?).

In order to compute the moment of inertia about the z-axis I,,, we replace (C.10) in

(C.3):

£ R
@:/ /(W+MWWMMM

_H Jo

2 (C.12)
B mH+mm
—TP\ Ty 12)

Inverting (C.9), one obtain p:
M
P = ARH

and replacing it in (C.11) gives
M

In order to compute the xy and yx products of inertia, (C.4) is used:

£ % s
Iwy:/z/y/x (ryp) dzdydz = 0.
233

Similarly, I, and I, are 0.

Finally, the inertia matrix of a cylinder is

M3ﬁ+m 0 0
Icyl = 12 0 3R? + H? 0 1. (013)
0 0 6R2

Due to the symmetry of the cylinder, its inertia matrix I.,; is diagonal.

Appendix D

Point reprojection

Consider a projective camera matrix P given by

a 0 i) 0
P=1{0 a y 0],
0 0 1 O

in which « represent the focal length of the camera in terms of pixel dimensions and
(aco,yo)T is the principal point in terms of pixel dimensions. The camera maps a 3D

point (X,Y, Z)T to a 2D point (z,y)” by the following relation

X
x
1772
Z
1
After the point normalization, we obtain
r=—=a+ 2o
Z
v N (D.1)
=—a« .
y=7 Yo

Assuming that the intrinsic camera parameters (a, xo and yp) are known and that the
depth of the point Z can be estimated, we can compute the position of the point in the

space from (D.1):

72

Point reprojection

73
Z
X=2(z-
., (@ — o)
Z
Y =—(y—yo)
So, the coordinates of the reprojected point (x,y)? are
g (x — o)
Z(y—wo)| - (D.2)

Bibliography

1]

2]

[3]

[10]

[11]

S. Bouabdallah. Design and Control of Quadrotors with Application to Autonomous
Flying. PhD thesis, 2007.

R. Mahony, V. Kumar, and P. Corke. Multirotor aerial vehicles: Modeling, esti-
mation, and control of quadrotor. Robotics € Automation Magazine, pages 20-32,
2012.

V. Mistler, A. Benallegue, and N.K. M’Sirdi. Exact linearization and noninteract-
ing control of a 4 rotors helicopter via dynamic feedback. In Robot and Human

Interactive Communication, pages 586-593. IEEE, 2001.

S.B.V. Gomes and J.J.G. Ramos. Airship dynamic modelling for autonomous op-

eration. In Robotics & Automation, pages 3462-3467. IEEE, 2001.
H.K. Khalil. Non-Linear System. Prentice Hall, 1996.
A. Tsidori. Non-Linear Control System. Springer, 1995.

S.A. Al-Hiddabi. Quadrotor control using feedback linearization with dynamic
extension. In International Symposium on Mechatronics and its Applications

(ISMA09), pages 1-3. IEEE, 20009.

D. Mellinger and V. Kumar. Minimum snap trajectory generation and control for
quadrotors. In Robotics and Automation (ICRA), pages 2520-2525. IEEE, 2011.

A. Isidori, C.H. Moog, and A. De Luca. A sufficient condition for full linearization
via dynamic state feedback. In Decision and Control, pages 203—208. IEEE, 1986.

M.-D. Hua, T. Hamel, P. Morin, and C. Samson. A control approach for thrust-
propelled underactuated vehicles and its application to vtol drones. Automatic
Control, pages 1837-1853, 2009.

M.-D. Hua, T. Hamel, P. Morin, and C. Samson. Introduction to feedback control
of underactuated vtol vehicles. In Control Systems, pages 61-75. IEEE, 2013.

74

Bibliography 75

[12] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics Modelling, Planning
and Control. Springer, 2008.

[13] M.G. Park, J.H. Jeon, and M.C. Lee. Obstacle avoidance for mobile robots using ar-
tificial potential field approach with simulated annealing. In Industrial Electronics,
pages 1530-1535. IEEE, 2001.

[14] D. Zhou and M. Schwager. Vector field following for quadrotors using differential
flatness. In Robotics and Automation (ICRA), pages 6567-6572. IEEE, 2014.

[15] N. Abas, A. Legowo, and R. Akmeliawati. Parameter identification of an au-

tonomous quadrotor. In Mechatronics (ICOM), pages 1-8. IEEE, 2011.

[16] T. Lee, M. Leok, and N.H. McClamroch. Geometric tracking control of a quadrotor
uav on se(3). In Decision and Control (CDC), pages 420-5425. IEEE, 2010.

llodsxa

Hacamneped, s xomie 6u nodaxysamu moim bamvkam, 6e3 axux b6yso 6
HeMOodHCAUB0 docaemu yiel memu. Taxooc eeauxe daxyro moiti cecmpi Oneni
3a me, wo nidmpumyeara mere yeecv uet wac. Ille s daxyro m. Jlanri, Bipi
ma leano6i 3a me, WO «MPUMAAY KYAAKUY 3¢ MIT YCNAT, © 6CIM, TMO 6 MEHE
81PUSB.

Andpiti

Ringraziamenti

Ringrazio il prof. Giuseppe Oriolo per la disponibilita e l'opportunita che mi
ha dato nel migliorare e dimostrare le mie capacita attraverso questo lavoro.
Vorrei inoltre ringraziare dott. Lorenzo Rosa che con la massima pazienza
mi ha sostenuto e mi ha aiutato gentilmente nella ricerca delle soluzioni.
Grazie anche a Roberto, Antonio, Andrea, Angela e molti altri che hanno
condiviso con me di questo percorso.

Andriy

Acknowledgements

I would like to thank my classmates for the exciting experience we shared
together, the stimulating discussions, the sleepless nights we were working
together before deadlines, and all the fun we have had in the last three years.

Andriy

	Abstract
	List of Figures
	Abbreviations
	Symbols
	1 Introduction
	1.1 Motivations and objectives
	1.2 Overview

	2 Modelling and control
	2.1 Quadrotor dynamics
	2.1.1 Configuration definition
	2.1.2 Complete quadrotor model
	2.1.3 Assumptions and simplifications

	2.2 Dynamic feedback linearization
	2.2.1 Introduction
	2.2.2 Application to quadrotor model

	3 Navigation and obstacle avoidance
	3.1 Driving inputs
	3.1.1 First-order feed-forward
	3.1.2 Towards feasibility of inputs

	3.2 Obstacle avoidance
	3.2.1 Artificial potential fields
	3.2.2 Application to quadrotor

	4 Simulation results
	4.1 Numerical simulations
	4.1.1 DFL tests
	4.1.2 Obstacle avoidance tests
	4.1.3 DFL with obstacle avoidance tests

	4.2 Dynamical simulations
	4.2.1 Circle tracking
	4.2.2 Travelling in labyrinth

	5 Experimental results
	5.1 Hardware system
	5.1.1 Quadrotor
	5.1.2 RGB-D sensor

	5.2 Parameters estimation
	5.2.1 Speed conversion
	5.2.2 Thrust coefficient
	5.2.3 Drag coefficient and moments of inertia

	5.3 Data filtering
	5.3.1 Median filter
	5.3.2 Average filter
	5.3.3 Polynomial fitting

	6 Conclusions
	A Rotation matrix
	A.1 Derivative of rotation matrix

	B Lie derivative
	C Inertia matrix
	C.1 Solid cuboid
	C.2 Solid cylinder

	D Point reprojection
	Bibliography

