

Reactive obstacle avoidance for
quadrotor UAVs based on dynamic
feedback linearization

Facoltà di Ingegneria dell'Informazione, Informatica e Statistica

Dipartimento di Ingegneria Informatica, Automatica e Gestionale
Corso di laurea in Intelligenza Artificiale e Robotica

Candidato
Andriy Sarabakha
1192958

Relatore Correlatore
Prof. Giuseppe Oriolo Dott. Lorenzo Rosa

A/A 2014/2015

“A helicopter is a mechanical engineer’s dream and an aerodynamicist’s night-

mare.”

John Watkinson, British teacher

“If you are in trouble anywhere, an airplane can fly over and drop flowers, but a

helicopter can land and save your life.”

Igor Sikorsky, Ukrainian American aviation pioneer

Abstract

This work addresses the problem of ensuring a safe navigation in an unknown cluttered

environment for a quadrotor-like Vertical Take-Off and Landing (VTOL) Unmanned

Aerial Vehicle (UAV). Consequently, the main issue is to perform effective obstacle

avoidance, and we want to solve this problem by designing a fast reactive behaviour

able to ensure absence of collisions both with static and moving obstacles. Moreover, we

want to consider the motion capabilities of the vehicle, so that the obstacle avoidance

controller produces feasible inputs for the robot.

To this aim, we rely on classical obstacle avoidance technique which uses Artificial

Potential Fields (APF). In a first moment, we consider the hypotheses of quasi-stationary

flight and we feed the input given by the APF in a controller based on Dynamic Feedback

Linearization (DFL). We show that the closed-loop behaviour of the resulting linearized

system is not acceptable, especially when the vehicle approaches the obstacle with high

speed. Thus, to solve the issue, we consider the use of a first-order feed-forward, which is

used to generate a short-term trajectory. By differentiating the generated trajectory, we

compute suitable inputs for the DFL controller. At the end, by considering the motion

capabilities of the VTOL UAV in the design of the controller, we obtain a control

framework which ensures the feasibility of the commanded trajectory for the original

system.

Contents

Abstract iii

List of Figures vi

Abbreviations viii

Symbols ix

1 Introduction 1

1.1 Motivations and objectives . 1

1.2 Overview . 3

2 Modelling and control 5

2.1 Quadrotor dynamics . 5

2.1.1 Configuration definition . 6

2.1.2 Complete quadrotor model . 10

2.1.3 Assumptions and simplifications 11

2.2 Dynamic feedback linearization . 13

2.2.1 Introduction . 14

2.2.2 Application to quadrotor model . 16

3 Navigation and obstacle avoidance 23

3.1 Driving inputs . 23

3.1.1 First-order feed-forward . 23

3.1.2 Towards feasibility of inputs . 24

3.2 Obstacle avoidance . 27

3.2.1 Artificial potential fields . 28

3.2.2 Application to quadrotor . 30

4 Simulation results 32

4.1 Numerical simulations . 32

4.1.1 DFL tests . 33

4.1.2 Obstacle avoidance tests . 36

4.1.3 DFL with obstacle avoidance tests 39

4.2 Dynamical simulations . 40

4.2.1 Circle tracking . 44

iv

Contents v

4.2.2 Travelling in labyrinth . 47

5 Experimental results 48

5.1 Hardware system . 48

5.1.1 Quadrotor . 49

5.1.2 RGB-D sensor . 50

5.2 Parameters estimation . 53

5.2.1 Speed conversion . 53

5.2.2 Thrust coefficient . 54

5.2.3 Drag coefficient and moments of inertia 55

5.3 Data filtering . 57

5.3.1 Median filter . 57

5.3.2 Average filter . 58

5.3.3 Polynomial fitting . 59

6 Conclusions 62

A Rotation matrix 63

A.1 Derivative of rotation matrix . 64

B Lie derivative 66

C Inertia matrix 67

C.1 Solid cuboid . 68

C.2 Solid cylinder . 70

D Point reprojection 72

Bibliography 74

List of Figures

1.1 Quadrotor aircraft. 1

1.2 System architecture. 4

2.1 The quadrotor concept. The width of the arrows is proportional to the
propellers’ angular speed. 6

2.2 Quadrotor model with reference frames. 7

2.3 Block diagram of the feedback linearization. 14

2.4 Block diagram of the double integrator. 17

2.5 Block diagram of the control law. 20

2.6 Block diagram of the closed loop system. 22

3.1 An examples of velocity, acceleration, jerk and snap transitions needed to
achieve desired velocity ẋf from initial velocity ẋ0. 26

3.2 A repulsive potential field in the two-dimensional configuration space with
a circular obstacle. 29

3.3 Bounding sphere surrounding schematic quadrotor structure. 30

4.1 3D plot of circle tracking on xy-plane with DFL. 34

4.2 Tracking of a circle on xy-plane with DFL. Plots of desired (dashed green
line) and realized (solid blue line) trajectories. 35

4.3 3D plot of vertical helix tracking with DFL. 36

4.4 Tracking of a vertical helix with DFL. Plots of desired (dashed green line)
and actual (solid blue line) trajectories. 37

4.5 Reaction of the quadrotor to the obstacle. 37

4.6 Artificial potential field related to the obstacles and to the command. . . 38

4.7 Reaction of the quadrotor to the obstacle. 39

4.8 3D plot of circle tracking in presence of an obstacle. 40

4.9 Top view of circle tracking in presence of an obstacle. 41

4.10 Tracking of a circle in presence of an obstacle. Plots of desired (dashed
green line) and realized (solid blue line) trajectories. 41

4.11 CAD model of Pelican quadrotor with Kinect depth sensor. 42

4.12 Block diagram of ROS nodes and ROS topics. 43

4.13 An examples of profiles of transitory velocities, accelerations, jerks and
snaps needed for circle tracking. The red curves are functions on x-axis
and the blue curves are functions on y-axis. 45

4.14 3D plot of circle tracking on xy-plane with DFL. 46

4.15 Tracking of a circle on xy-plane with DFL. Plots of desired (dashed green
line) and realized (solid blue line) trajectories. 46

4.16 Top view of a small labyrinth and quadrotor’s path (blue curve). 47

vi

List of Figures vii

5.1 AscTec Pelican quadrotor. 48

5.2 ASUS Xtion PRO LIVE. 50

5.3 An example of raw data from ASUS Xtion. 51

5.4 The point cloud reconstructed from the RGB image in Figure 5.3a and
the depth map in Figure 5.3b. 52

5.5 Correspondences between AscTec motor velocity and real angular velocity
and the corresponding regression line. 53

5.6 An example of raw quadrotor height from sonar (blue curve) and filtered
value (red curve). 58

5.7 An example of raw quadrotor angular velocity from IMU (blue curve) and
filtered value (red curve). 59

5.8 An example of raw quadrotor acceleration from accelerometer (blue curve)
and filtered value (red curve). 60

5.9 An example of numerical derivative of jerk (blue curve) and derivation of
jerk with polynomial fitting method (red curve). 61

Abbreviations

BLDC Brush-Less Direct Current

DFL Dynamic Feedback Linearization

DOF Degrees Of Freedom

GPS Global Positioning System

HLP High Level Processor

IARC International Aerial Robotics Competition

IMU Inertial Measurement Unit

LLP Low Level Processor

MAV Micro Aerial Vehicle

MFR Miniature Flying Robots

MIMO Multiple-Input Multiple-Output

PD Proportional-Derivative

PID Proportional-Integral-Derivative

PPM Pulse Position Modulation

RGB Red-Green-Blue

ROS Robot Operating System

UAV Unmanned Aerial Vehicle

VM Virtual Model

VTOL Vertical Take-Off and Landing

viii

Symbols

A quadrotor linear acceleration in world frame [m/s2]

AB quadrotor linear acceleration in body frame [m/s2]

Ax aerodynamic forces about x-axis [N]

Ay aerodynamic forces about y-axis [N]

Az aerodynamic forces about z-axis [N]

Ap aerodynamic moments about x-axis [N ·m]

Aq aerodynamic moments about y-axis [N ·m]

Ar aerodynamic moments about z-axis [N ·m]

B quadrotor body

b propellers thrust coefficient [N · s2]

C configuration space

CO image of obstacle in configuration space

Dx unmodelled forces about x-axis [N]

Dy unmodelled forces about y-axis [N]

Dz unmodelled forces about z-axis [N]

Dp external disturbance moments about x-axis [N ·m]

Dq external disturbance moments about y-axis [N ·m]

Dr external disturbance moments about z-axis [N ·m]

d propellers drag coefficient [N ·m · s2]

Fe external forces vector [N]

fi force generated by ith propeller [N]

g gravity acceleration [m/s2]

I inertia matrix [kg ·m2]

Ix moment of inertia about x-axis [kg ·m2]

Iy moment of inertia about y-axis [kg ·m2]

ix

Symbols x

Iz moment of inertia about z-axis [kg ·m2]

l quadrotor arm length [m]

lp quadrotor propeller length [m]

m quadrotor mass [kg]

Oi ith obstacle

p quadrotor angular velocity in body frame x-axis [rad/s]

q quadrotor configuration

q quadrotor angular velocity in body frame y-axis [rad/s]

R rotation matrix

R radius of quadrotor bounding sphere [m]

r quadrotor angular velocity in body frame z-axis [rad/s]

T transformation matrix

T quadrotor thrust force [N]

Ur repulsive potential field [N]

u control inputs to quadrotor system

û control inputs to extended quadrotor system

u quadrotor linear velocity in world frame x-axis [m/s]

V quadrotor linear velocity in world frame [m/s]

V quadrotor volume [m3]

VB quadrotor linear velocity in body frame [m/s]

v quadrotor linear velocity in world frame y-axis [m/s]

W workspace

w quadrotor linear velocity in world frame z-axis [m/s]

x quadrotor state

x̂ quadrotor extended state

x quadrotor position along world frame x-axis [m]

y output of quadrotor system

y quadrotor position along world frame y-axis [m]

z state of linearized system

z quadrotor position along world frame z-axis [m]

θ pitch angle in world frame [rad]

τ e external torques vector [N ·m]

Symbols xi

τi torque generated by ith propeller [N ·m]

τθ pitch torque in body frame [N ·m]

τφ roll torque in body frame [N ·m]

τψ yaw torque in body frame [N ·m]

φ roll angle in world frame [rad]

ψ yaw angle in world frame [rad]

ω quadrotor angular velocity in world frame [rad/s]

ωB quadrotor angular velocity in body frame [rad/s]

ωi rotational speed of ith propeller [rad/s]

xii

Chapter 1

Introduction

1.1 Motivations and objectives

Since the beginning of time flying objects have exerted a great fascination on man. The

last decades has seen many exciting developments in the area of Unmanned Aerial Ve-

hicles (UAVs). Therefore, the scientific challenge in UAV design and control is very

Figure 1.1: Quadrotor aircraft.

1

Introduction 2

motivating. On the other hand, UAVs are gaining increasing interest because of a wide

area of applications from military to civilian fields. At the same time, in the past years

many works were concerned on developing methods for navigation and obstacle avoid-

ance for the autonomous ground vehicles. The existing ground robots have limitations

on reaching the desired location in several applications. Thus, the recent progresses in

technology push towards developing new mobility concepts, which include flying sys-

tems. However, despite the dynamics of flying vehicles is more complex than the one

of ground robots, one could still apply the techniques already developed for ground

robots. An attractive group of flying robots is made up of quadrotor aircraft (shown in

Figure 1.1).

In particular, a quadrotor or quadcopter is an UAV which has Vertical Take-Off

and Landing (VTOL) characteristics, like helicopters, but lifted and propelled by four

rotors in a cross configuration. Due to its simple symmetric mechanical configuration, it

is capable of flying without all those complex linkages appearing in typical helicopters.

However, like a classical helicopter, a quadrotor has non-linear dynamics. Moreover, it is

really hard to model all secondary order effects. Thus, a control system capable of dealing

with non-linearity, unmodeled dynamics and disturbances is needed. Therefore, the

interest comes not only from its dynamics, which represent an attractive control problem,

but also from the design issue. Integrating the sensors, actuators and intelligence into a

lightweight flying system is not trivial.

Currently, technology provides a new generation of integrated micro Inertial Mea-

surement Unit (IMU), and the latest progresses in high density power storage offers very

promising results especially for Micro Aerial Vehicles (MAV); thus, the cost and size

reduction of flying systems makes them very interesting both for civilian and military

applications. In particular, quadrotors are very promising platforms: because of their

increased mobility in the environment, they are able to be effectively employed both

indoor and outdoor. Moreover, quadrotor propulsion system is very robust and guaran-

tees a stable flight. Besides, quadrotors are low-noise, emission-free and environmentally

friendly devices. On the other hand, small quadrotors have limited payload, that implies

a selection of light sensors, and the limited computational power on-board makes the

development of fully autonomous quadrotors very challenging. In the last ten years,

the UAVs’ autonomy was dramatically improved with the development of new naviga-

tion, communication, control and image processing technologies. Thus, nowadays we

can consider some UAVs as intelligent robotic systems integrating perception, reasoning

and decision making capabilities, which allow to operate in complex environments.

Recently, small quadrotors had a quick growth and had attracted much interest in

the research community. Indeed, the quadrotor has become a standard platform in the

Introduction 3

experimental applications. Great manoeuvrability and small size of those vehicles make

them suitable for indoor use. However, unsupervised flight of aerial vehicles is a hard

challenge, especially in indoor applications, where it is not possible to use GPS1.

Most of quadrotor’s applications can in principle be achieved by using straight-

forward linear control systems, such as Proportional-Derivative (PD) controller. Nev-

ertheless, to fly in cluttered environments it could be useful to obtain a very accurate

stabilization, a highly precise navigation and collision avoidance with tracking of aggres-

sive manoeuvres. To these purposes, non-linear control techniques based on Dynamic

Feedback Linearization (DFL) should be designed to provide better convergence and

robustness performances. Through a change of variables, DFL transforms a non-linear

system into an equivalent linear system with suitable control input and output func-

tions. This equivalent linear system consists of a number of decoupled controllable and

observable canonical forms. However, this technique needs exact cancellations and full

accessibility to the state of the quadrotor. For these reasons it presents several critical

issues when dealing with real implementation in the physical world.

1.2 Overview

The outline of this work is as follows. After this introductory chapter (Chapter 1), in

Chapter 2 we present the quadrotor dynamical model and we show the basic principles

of DFL. In Chapter 3 a control analysis of the quadrotor is reported in order to obtain

the feed-forward+feedback controller with obstacle avoidance. In Chapter 4 the sim-

ulation results are given to check the designed controller behaviour. In Chapter 5 the

experimental system is described and the experimental results are presented. Finally, we

will draw some concluding remarks in Chapter 6. The derivation of 3D rotation matrix

and its derivative is reported in Appendix A. The bases of Lie derivative are described

in Appendix B. The computation of inertia matrices for solid cuboids and cylinders is

done in Appendix C. The reprojection of an image point to a correspondent point in

space is shown in Appendix D.

In Figure 1.2 is depicted the overall system architecture. High level navigation

commands are provided by an operator through a joystick or keyboard. This command is

interpreted by the controller as a desired velocity. In order to compute the snap2 needed

to achieve this desired velocity, the controller needs both the desired quantities and the

actual ones. Some quantities, like altitude, attitude, vertical velocity, angular velocities

1 Global Positioning System (GPS) signal has very poor performance in indoor environments.
2 Snap is the fourth derivative of the position vector with respect to time. The choice of commanding

with snap is argued out later in Subsection 2.2.2.

Introduction 4

Figure 1.2: System architecture.

and linear accelerations, are directly measured by using UAV ’s sensors. Others need to

be estimated by additional processes. The obstacle avoidance block needs to compute

the desired velocities, accelerations and jerks in order to prevent hitting an object during

the execution of the desired velocities given by the user; the optical flow block estimates

velocities on the horizontal plane. Furthermore, depth image to point cloud converter

processes the depth map in order to return a set of 3D points. Once the desired snap

is computed by the controller, it is sent to the dynamic feedback linearization, which,

inverting the quadrotor’s dynamics, computes the commanded motors velocities, and in

turn send them to the quadrotor.

Chapter 2

Modelling and control

In this chapter we derive and describe a dynamic model representing a quadrotor. A

complete quadrotor’s model is provided, afterwards further assumptions and simplifi-

cations are made. The second part of this chapter introduces the dynamic feedback

linearization technique in order to design a feedback control law for a quadrotor.

2.1 Quadrotor dynamics

To develop control laws and estimation schemes, it is needed to model the dynamics of

the quadrotor and understand how forces and torques act on the vehicle. First, dynamic

and kinematic differential equations based on the quadrotor model are derived, after

which complete quadrotor model will be developed. Then, a state variable notation is

introduced.

A quadrotor is an aerial vehicle actuated by modulating the speed command of

each of the four motors. It consists of four identical rotors and propellers located at

the extremities of a cross-shaped frame. In a quadrotor all the movements are the

consequence of the propellers’ speed (as shown in Figure 2.1): two propellers rotate in

a clockwise direction (front and rear propellers) while the other two rotate in a counter-

clockwise direction (left and right propellers). Changing simultaneously the throttle of

all motors, while the vehicle is horizontal, produces vertical motion (Figure 2.1a). A

difference of speed between the blades on the same axis carries a rotation of the aircraft

along the other axis. Roll moments are produced by adjusting the thrust of the left

motor with respect to the right one (Figure 2.1b). Pitching moments are produced

in a similar way by increasing the thrust of the front motor while decreasing that of

the rear motor or vice versa (Figure 2.1c). Yawing moments are slightly more subtle:

5

Modelling and control 6

(a) Motion along quadrotor’s vertical axis. (b) Roll motion.

(c) Pitch motion. (d) Yaw motion.

Figure 2.1: The quadrotor concept. The width of the arrows is proportional to the
propellers’ angular speed.

if the front and rear motors (which spin clockwise) spin faster than the left and right

motors (which spin counter-clockwise), yawing results due to the difference in rotor drag

moments on the respective motors (Figure 2.1d). Therefore, the quadrotor is a highly

non-linear dynamic system with four control inputs (angular speed of four rotors) and

six degrees of freedom (position and orientation in space), resulting in a multiple-input

multiple-output (MIMO) under-actuated system.

2.1.1 Configuration definition

Let the world fixed inertial reference frame be {~xW , ~yW , ~zW} and the body frame be

{~xB, ~yB, ~zB}. The origin of the body frame is located at the center of mass of the

quadrotor. Axes ~xB and ~yB lie in the plane defined by the centres of the four rotors

and respectively point toward motor 1 and motor 2, as illustrated in Figure 2.2. Axis

~zW points downward, opposite to the direction of gravity, as well as axis ~zB which is

opposite to the direction of the total thrust.

Modelling and control 7

Figure 2.2: Quadrotor model with reference frames.

The four propellers rotations generate four forces (f1, f2, f3 and f4), directed along

the axis of rotation ~zB and with module proportional to the speed of rotation, and four

torques (τ1, τ2, τ3 and τ4), around the axis of rotation ~zB and with module proportional

to the speed of rotation [1]:

fi = bω2
i

τi = dlω2
i

, i = 1, . . . , 4, (2.1)

where b is the propeller thrust coefficient, d is the propeller drag coefficient and ωi is

the rotational speed of the ith propeller.

From the point of view of control, it is easier to consider these four forces and four

torques as the union of the forces, directed towards the vertical axis of the quadrotor

~zW and applied to its center of mass, and three rotation torques, along roll (~xW), pitch

(~yW) and yaw (~zW). The quadrotor electric motors are velocity controlled, so the vector

u of control inputs may by considered directly as

u =
[
T τφ τθ τψ

]T
,

Modelling and control 8

where T is the total thrust and acts along ~bW axis, whereas τφ, τθ and τψ are the

moments acting around ~xW , ~yW and ~zW axes, respectively. Under these considerations,

the relation between u and ωi, i = 1, . . . , 4, becomes algebraic [2]:

T = f1 + f2 + f3 + f4

τφ = l(−f2 + f4)

τθ = l(f1 − f3)

τψ = −τ1 + τ2 − τ3 + τ4,

(2.2)

where l is the arm length. Applying (2.1) to (2.2) and writing it in matrix form:


T

τφ

τθ

τψ

 =


b b b b

0 −bl 0 bl

bl 0 −bl 0

−dl dl −dl dl




ω2
1

ω2
2

ω2
3

ω2
4

 .

This relation is always invertible, when l 6= 0, b 6= 0 and d 6= 0. Therefore, inputs can

then be brought back to the speed of the individual propellers using the following inverse

transformation:


ω2
1

ω2
2

ω2
3

ω2
4

 =
1

4bdl


dl 0 2d −b
dl −2d 0 b

dl 0 −2d −b
dl 2d 0 b




T

τφ

τθ

τψ

 .

The absolute position of a quadrotor (three DOF) is described by the three Carte-

sian coordinates (x, y and z) of its center of mass in the world frame and its attitude

(three DOF) by the three Euler’s angles (φ, θ and ψ). These three angles are respectively

called roll (−π
2 < φ < π

2), pitch (−π
2 < θ < π

2) and yaw (0 ≤ ψ < 2π).

The derivative with respect to time of the position (x, y, z) is given by

V =
[
ẋ ẏ ż

]T
=
[
u v w

]T
,

where V is the absolute velocity of the quadrotor’s center of mass expressed with respect

to the world fixed inertial reference frame. Let VB ∈ R3 be the absolute velocity of the

quadrotor expressed in the body fixed reference frame. So, V and VB are related by

Modelling and control 9

V = RVB, (2.3)

where R ∈ SO(3)1 is the rotation matrix from the body frame to the world frame and

is computed in Appendix A:

R =


cosψ cos θ cosψ sinφ sin θ − cosφ sinψ sinφ sinψ + cosφ cosψ sin θ

cos θ sinψ cosφ cosψ + sinφ sinψ sin θ cosφ sinψ sin θ − cosψ sinφ

− sin θ cos θ sinφ cosφ cos θ

 .

Similarly, the derivatives with respect to time of the angles (φ, θ, ψ) are given by

ω =
[
φ̇ θ̇ ψ̇

]T
,

and the angular velocities expressed in the body frame are

ωB =
[
p q r

]T
.

The relation between ω and ωB is given by

ω = TωB, (2.4)

in which T is the transformation matrix given by

T =


1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ

 .

Correspondingly, let A ∈ R3 be the absolute acceleration of the quadrotor expressed

in the world fixed reference frame and AB ∈ R3 be the absolute acceleration of the

quadrotor expressed in the body reference frame. So, the relation between A and AB is

computed by the analytical derivative of (2.3):

A = ṘVB + RAB.

1 SO(3) denotes the 3D rotation group.

Modelling and control 10

In Appendix A.1 is shown how the time derivative of R can be expressed as a function

of R itself. Using this expression, the final relation is obtained2:

A = [ω]×RVB + RAB = [ω]×V + RAB.

2.1.2 Complete quadrotor model

Using the Newton-Euler equations about the center of mass, the dynamic equations for

the quadrotor are the following [3]:

mV̇ = Fe

Iω̇B = −ωB × IωB + τ e,
(2.5)

where m is the mass and I is the diagonal inertia matrix given by

I =


Ix 0 0

0 Iy 0

0 0 Iz

 (2.6)

and Fe is the vector of external forces and τ e is the vector of external torques. They

contain the quadrotor’s mass, the aerodynamic forces, the thrust and the torques de-

veloped by the four rotors. Some calculations yield the following form for theses two

vectors

Fe =


− (cosφ sin θ cosψ + sinφ sinψ)T +Ax +Dx

− (cosφ sin θ sinψ − sinφ cosψ)T +Ay +Dy

− cosφ cos θT +mg +Az +Dz



τ e =


τφ +Ap +Dp +Gp

τθ +Aq +Dq +Gq

τψ +Ar +Dr +Gr

 ,
(2.7)

in which

2 [ω]× denotes the skew-symmetric matrix, given by (A.5).

Modelling and control 11

• Ax, Ay and Az are the aerodynamic forces acting on the UAV3;

• Dx, Dy and Dz are the external disturbances and unmodelled forces, given by

wind, contacts or collisions;

• Ap, Aq and Ar are the aerodynamic moments acting on the UAV4;

• Dp, Dq and Dr are the external disturbance moments, like wind;

• Gp, Gq and Gr are the gyroscopic effects generated by propellers;

• and g is the gravity acceleration (g = 9.81m/s2).

Using dynamic and kinematic differential equations (2.3), (2.4), (2.5) and (2.7), the

following system of non-linear differential equations is obtained



ẋ = u

ẏ = v

ż = w

φ̇ = p+ sinφ tan θq + cosφ tan θr

θ̇ = cosφq − sinφr

ψ̇ = sinφ
cos θq + cosφ

cos θ r

u̇ = − 1
m (cosφ cosψ sin θ + sinφ sinψ)T + Ax+Dx

m

v̇ = − 1
m (cosφ sinψ sin θ − cosψ sinφ)T +

Ay+Dy
m

ẇ = − 1
m cosφ cos θT + g + Az+Dz

m

ṗ =
Iy−Iz
Ix

qr + 1
Ix
τφ +

Ap+Dp+Gp
Ix

q̇ = Iz−Ix
Iy

pr + 1
Iy
τθ +

Aq+Dq+Gq
Iy

ṙ =
Ix−Iy
Iz

pq + 1
Iz
τψ + Ar+Dr+Gr

Iz
.

(2.8)

2.1.3 Assumptions and simplifications

Let’s assume that the quadrotor propeller speed is directly proportional to the current

supplied to the motor. If the velocity induced by the wake is omitted, then thrust and

torque are proportional to the square of the angular speed of the propeller, as supposed

in the relation (2.1).

3 Aerodynamic forces are computed as Ai = 1
2
ρairCi|V|2V 2/3, where ρair is the air density, Ci are the

aerodynamic coefficients and V is the quadrotor volume [4].
4 Aerodynamic moments are computed as Ai = 1

2
ρairCi|ω|2V , where ρair is the air density, Ci are the

aerodynamic coefficients and V is the quadrotor volume [4].

Modelling and control 12

The quadrotor model (2.8) is assumed to be sufficiently accurate in representing all

quadrotor functional motions. But is not suitable for control design, because it depends

upon the aerodynamic forces (Ax, Ay and Az) and moments (Ap, Aq and Ar), which

are difficult to model in presence of parametric uncertainties. On the other hand, the

external disturbance forces (Dx, Dy andDz) and moments (Dp, Dq andDr) are unknown

in the presence of unpredictable winds and turbulences. Thus, these terms are neglected

during the control design and are considered as disturbances. Many of those terms are

dissipative (e.g. due to the air friction), so that their contribution partially contributes

to the stability of the system. The gyroscopic terms (Gp, Gq and Gr) are second-order

terms with respect to the other torques acting on the vehicle, so they can be neglected.

Taken all these assumptions, the complete quadrotor model (2.8) becomes:



ẋ = u

ẏ = v

ż = w

φ̇ = p+ sinφ tan θq + cosφ tan θr

θ̇ = cosφq − sinφr

ψ̇ = sinφ
cos θq + cosφ

cos θ r

u̇ = − 1
m (cosφ cosψ sin θ + sinφ sinψ)T

v̇ = − 1
m (cosφ sinψ sin θ − cosψ sinφ)T

ẇ = − 1
m cosφ cos θT + g

ṗ =
Iy−Iz
Ix

qr + 1
Ix
τφ

q̇ = Iz−Ix
Iy

pr + 1
Iy
τθ

ṙ =
Ix−Iy
Iz

pq + 1
Iz
τψ,

(2.9)

which can be described in state space form

ẋ = f(x) + g(x)u,

where

x =
[
x y z φ θ ψ u v w p q r

]T
,

Modelling and control 13

f(x) =



u

v

w

p+ sinφ tan θq + cosφ tan θr

cosφq − sinφr
sinφ
cos θq + cosφ

cos θ r

0

0

g
Iy−Iz
Ix

qr
Iz−Ix
Iy

pr
Ix−Iy
Iz

pq



,

g(x) =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

− 1
m (cosφ cosψ sin θ + sinφ sinψ) 0 0 0

− 1
m (cosφ sinψ sin θ − cosψ sinφ) 0 0 0

− 1
m cosφ cos θ 0 0 0

0 1
Ix

0 0

0 0 1
Iy

0

0 0 0 1
Iz



and

u =
[
T τφ τθ τψ

]T
.

2.2 Dynamic feedback linearization

Due to under-actuation, the quadrotor system (2.9) can not be transformed into an

equivalent linear and controllable system by static state feedback. However, it is possible

Modelling and control 14

Feedback linearization:

u = α(x) + β(x)v

Non-linear system:

ẋ = f(x) + g(x)u
y = h(x)

Linearized system

• v u y

x

Figure 2.3: Block diagram of the feedback linearization.

to resort to dynamic state feedback to obtain full state linearization. Dynamic feedback

linearization is a commonly used technique to approach non-linear control design that

algebraically transforms a non-linear system into an equivalent linear, controllable and

observable one, consisting of a number of decoupled canonical forms, so that the linear

control theory can be applied. This problem is known as the exact linearization problem.

2.2.1 Introduction

Given a non-linear system [5, 6]

ẋ = f(x) + g(x)u

y = h(x),
(2.10)

where x is the system state, u is the system input, y is the system output, f(x), g(x)

and h(x) are vector fields in Rn. The task of feedback linearization is to identify a static

state feedback control law of the following form:

u = α(x) + β(x)v, (2.11)

where v is an new control input, α(x) and β(x) are smooth functions defined in a

neighbourhood of some point x0 ∈ Rn and β(x0) 6= 0, such that the closed-loop system

in Figure 2.3, composed of (2.10) and (2.11):

ẋ = f(x) + g(x)α(x) + g(x)β(x)v

y = h(x),
(2.12)

Modelling and control 15

behaves as a linear completely accessible system:

ż = Az + Bv

y = Cz,
(2.13)

in which z represents the new state, A, B and C are matrices of suitable dimensions.

Let
[
r1 · · · ro

]
be the vector relative degree5 of the system (2.10). Differentiating

each element of the output vector for their relative degree [7]:

[
y
(r1)
1 · · · y

(ro)
o

]T
= b(x) + ∆(x)u,

where6

∆(x) =


Lg1L

r1−1
f h1(x) · · · LgoL

r1−1
f h1(x)

...
. . .

...

Lg1L
ro−1
f ho(x) · · · LgoL

ro−1
f ho(x)

 (2.14)

and

b(x) =
[
Lr1f h1(x) · · · Lrof ho(x)

]T
.

The main result about the input-output decoupling problem is that this problem

is solvable if and only if the matrix ∆(x) is non-singular. In that case, the static state

feedback (2.11) with

α(x) = −∆−1(x)b(x)

β(x) = ∆−1(x)
(2.15)

renders the closed-loop system (2.12) linear and decoupled from an input-output point

of view. More precisely,

y(ri) = vi, i = 1, . . . , o.

5 The relative degree ri is the number of times one has to differentiate the ith output in order to have
at least one component of the input vector u explicitly appearing.

6 Lfh denotes the Lie derivative of the function h with respect to the vector field f (see Appendix B).

Modelling and control 16

2.2.2 Application to quadrotor model

First, it is necessary to define the control objective by choosing a suitable output function

for the system (2.9). The number of outputs is set to the number of inputs, due to the

under-actuation it does not make any sense to choose more outputs than control inputs.

The most interesting outputs are the position of the quadrotor (x, y, z) and the yaw

orientation ψ [8], because it represents the heading direction, so the output function is

y = h(x) =
[
x y z ψ

]T
. (2.16)

In order to feedback linearizing the system, the necessary and sufficient condition

for the solvability of the state space exact linearization problem is [9]:

o∑
i=1

ri = n. (2.17)

For the nonlinear system (2.9), n = 12 and

[
r1 r2 r3 r4

]
=
[
2 2 2 2

]
.

Since,

r1 + r2 + r3 + r4 = 8 6= 12,

the condition (2.17) is not satisfied and, therefore, the input-output decoupling problem

is not solvable for the system (2.9) by means of a static state feedback control law (2.11).

In fact, if we compute ∆(x) using equation (2.14):

∆(x) =


1
m (cosφ cosψ sin θ + sinφ sinψ) 0 0 0
1
m (cosφ sinψ sin θ − cosψ sinφ) 0 0 0

1
m cosφ cos θ 0 0 0

0 0 1
Iy

sinφ sec θ 1
Iz

cosφ sec θ

 ,

which is singular for any x. In order to linearize (2.9), we need to invert ∆(x) in

(2.15). Indeed, due to the under-actuation of the quadrotor, its system (2.9) can not

be transformed into an equivalent linear and controllable one by static state feedback.

Modelling and control 17

∫ ∫
•
û1 ξ ζ = u1

Figure 2.4: Block diagram of the double integrator.

The reason is that the second order derivatives of x, y and z are affected only by the

control input u1 and none by u2, u3 and u4. Thus, in order to get ∆(x) non-singular, the

appearance of u1 should be delayed to higher order derivatives of x, y and z. In order

to achieve this result, a dynamic compensator is introduced. A dynamic compensator

is a feedback structure which incorporates an additional set of state variables and it is

modelled by the following equations [3]:

χ̇ = γ(x,χ) + δ(x,χ)û

û = α(x,χ) + β(x,χ)v,
(2.18)

in which û is new reference input, χ are auxiliary state variables, γ(x,χ) and δ(x,χ)

are vector fields in Rn̂. The purpose of the addition of χ is to achieve a right relative

degrees.

We set u1 equal to the output of an auxiliary dynamic system driven by a new

reference input û1 and modelled by the first equation of (2.18). The simplest way in

which this result can be achieved is to set this auxiliary dynamic system equal to a

double integrator (Figure 2.4). In this case,

χ =

[
ζ

ξ

]
,

γ(x,χ) =

[
ξ

0

]

and

δ(x,χ) =

[
0 0 0 0

1 0 0 0

]
.

So, u1 is set equal to the output of a double integrator driven by û1:

Modelling and control 18


u1 = ζ

ζ̇ = ξ

ξ̇ = û1.

(2.19)

The other input variables are left unchanged:

u2 = û2

u3 = û3

u4 = û4.

(2.20)

Now, u1 is not any-more an input for the system (2.9), but becomes the internal

state ζ for the new dynamical system (2.19). The obtained extended system is



ẋ = u

ẏ = v

ż = w

φ̇ = p+ sinφ tan θq + cosφ tan θr

θ̇ = cosφq − sinφr

ψ̇ = sinφ
cos θq + cosφ

cos θ r

u̇ = − 1
m (cosφ cosψ sin θ + sinφ sinψ) ζ

v̇ = − 1
m (cosφ sinψ sin θ − cosψ sinφ) ζ

ẇ = g − 1
m cosφ cos θζ

ṗ =
Iy−Iz
Ix

qr + 1
Ix
τφ

q̇ = Iz−Ix
Iy

pr + 1
Iy
τθ

ṙ =
Ix−Iy
Iz

pq + 1
Iz
τψ

ζ̇ = ξ

ξ̇ = û1,

(2.21)

The system (2.21) can be described in the state space form

˙̂x = f̂(x̂) + ĝ(x̂)û,

in which

Modelling and control 19

x̂ =
[
xT χT

]T
=
[
x y z φ θ ψ u v w p q r ζ ξ

]T
, (2.22)

f̂(x̂) =



u

v

w

p+ sinφ tan θq + cosφ tan θr

cosφq − sinφr
sinφ
cos θq + cosφ

cos θ r

− 1
m (cosφ cosψ sin θ + sinφ sinψ) ζ

− 1
m (cosφ sinψ sin θ − cosψ sinφ) ζ

g − 1
m cosφ cos θζ
Iy−Iz
Ix

qr
Iz−Ix
Iy

pr
Ix−Iy
Iz

pq

ξ

0



,

ĝ(x̂) =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 1
Ix

0 0

0 0 1
Iy

0

0 0 0 1
Iz

0 0 0 0

1 0 0 0


and

û =
[
T̈ τφ τθ τψ

]T
.

Modelling and control 20

Feedback linearization:

û = α(x, ζ, ξ) + β(x, ζ, ξ)v

∫ ∫
Quadrotor dynamics:

ẋ = f(x) + g(x)u
•v

û1 •
ξ

•
ζ u1

û2 u2

û3 u3

û4 u4

x

Figure 2.5: Block diagram of the control law.

The input-output decoupling problem is solvable for the non-linear system (2.9)

by means of a dynamic feedback control law, if it is solvable via static feedback for

the extended system (2.21). Since the extended non-linear system (2.21) has dimension

n̂ = 14 and

[
r̂1 r̂2 r̂3 r̂4

]
=
[
4 4 4 2

]
,

the condition (2.21) is satisfied and, therefore, the input-output decoupling problem is

solvable for the system (2.9) by means of a dynamic feedback control law of the form:

û = α(x̂) + β(x̂)v, (2.23)

where α(x̂) and β(x̂) are computed using equations (2.15). Moreover, we can recompute

∆(x̂) using equation (2.14):7

∆(x̂) =


m(sφsψ + cφcψsθ) m(cψsφ − cφsψsθ) −mcφcθ 0

− Ixm
ζ (cφsψ − cψsφsθ) Ixm

ζ (cφcψ + sφsψsθ)
Ixm
ζ cθsφ 0

− Iym
ζ cψcθ − Iym

ζ cθsψ
Iym
ζ sθ 0

Izm
ζ cψcθtφ

Izm
ζ cθtφsψ − Izm

ζ tφsθ Iz
cθ
cφ

 .

7 cθ, sθ and tθ denotes respectively cos θ, sin θ and tan θ.

Modelling and control 21

The matrix ∆(x̂) is non-singular at any point characterized by ζ 6= 0, φ 6= ±π
2 and

θ 6= ±π
2 . Recalling the relations between u and û in (2.19) and (2.20), the structure for

the control law of the original system (2.9) is shown in Figure 2.5.

Finally, the system can be transformed via dynamic feedback into a system which,

in suitable coordinates, is fully linear, controllable and observable [5]:



....
x = v1
....
y = v2
....
z = v3

ψ̈ = v4.

The change of coordinates z = Φ(x̂) is given by [6]:



z1 = h1(x̂) = x

z2 = Lfh1(x̂) = ẋ

z3 = L2
fh1(x̂) = ẍ

z4 = L3
fh1(x̂) =

...
x

z5 = h2(x̂) = y

z6 = Lfh2(x̂) = ẏ

z7 = L2
fh2(x̂) = ÿ

z8 = L3
fh2(x̂) =

...
y

z9 = h3(x̂) = z

z10 = Lfh3(x̂) = ż

z11 = L2
fh3(x̂) = z̈

z12 = L3
fh3(x̂) =

...
z

z13 = h4(x̂) = ψ

z14 = Lfh4(x̂) = ψ̇.

(2.24)

In the new coordinates, the non-linear system (2.21) appears as the linear system (2.13),

in which8

8 0 denotes a matrix of zeros of appropriate dimensions.

Modelling and control 22

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫

•
v1 z4 z3 z2 z1 = x

•
v2 z8 z7 z6 z5 = y

•
v3 z12 z11 z10 z9 = z

•
v4 z14 z13 = ψ

Figure 2.6: Block diagram of the closed loop system.

z =
[
z1 · · · z14

]T
,

v =
[
v1 v2 v3 v4

]T
,

y =
[
z1 z5 z9 z13

]T
=
[
x y z φ

]T
,

A =


A1 0 0 0

0 A1 0 0

0 0 A1 0

0 0 0 A2

 ,A1 =


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

 ,A2 =

[
0 1

0 0

]
,

B =


B1

B2

B3

B4

 ,B1 =


0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

 ,B2 =


0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

 ,B3 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0

 ,

B4 =

[
0 0 0 0

0 0 0 1

]
,

C =


C1 0 0 0

0 C1 0 0

0 0 C1 0

0 0 0 C2

 ,C1 =
[
1 0 0 0

]
,C2 =

[
1 0

]
.

The structure of the system in the new coordinates (2.21) is shown in Figure 2.6.

Chapter 3

Navigation and obstacle

avoidance

In this chapter obstacle avoidance problem applied to a quadrotor robot will be consid-

ered.

3.1 Driving inputs

3.1.1 First-order feed-forward

On the equivalent linear system (2.24) can be applied all standard control techniques

given by linear control system theory. Since we are dealing with four chains of integra-

tors, standard PD control law results the best choice. We want to control the quadrotor

position (x, y, z) and the yaw orientation ψ:

yd =
[
xd yd zd ψd

]T
and the errors are

e = yd − y =


ex

ey

ez

eψ

 =


xd − x
yd − y
zd − z
ψd − ψ

 .

23

Navigation and obstacle avoidance 24

At this point we can define a vector of four desired inputs vd =
[
vd,1 vd,2 vd,3 vd,4

]T
[10]:

vd,1 =
....
x d +

3∑
i=0

kx,ie
(i)
x

vd,2 =
....
y d +

3∑
i=0

ky,ie
(i)
y

vd,3 =
....
z d +

3∑
i=0

kz,ie
(i)
z

vd,4 = ψ̈d +
1∑
i=0

kψ,ie
(i)
ψ ,

(3.1)

where kx,i, ky,i and kz,i, i = 0, . . . , 3, and kψ,j , j = 0, 1, are the gains properly chosen

in such a way that the corresponding eigenvalues are placed in the open left half of the

complex plane. For this purpose, the coefficients of a Hurwitz polynomial1 are chosen

[11].

3.1.2 Towards feasibility of inputs

In order to compute four control inputs in (3.1), we have to know the desired snaps

(
....
x d,

....
y d,

....
z d), jerks (

...
x d,

...
y d,

...
z d), accelerations (ẍd, ÿd, z̈d, ψ̈d) and velocities (ẋd,

ẏd, żd, ψ̇d) at any point of time. Since we want to control the quadrotor in velocity,

all the quantities have to be reconstructed from the desired velocities. If we simply do

a numerical derivative of the desired velocity, the result is very noisy. So we need to

proceed in an alternative way.

Let’s consider a generic septic polynomial2 function which can represent the velocity

profile on x-axis:

ẋ(τ) = c7τ
7 + c6τ

6 + c7τ
7 + c6τ

6 + c5τ
5 + c4τ

4 + c3τ
3 + c2τ

2 + c1τ + c0, (3.2)

in which τ ∈ [0, 1] is normalized time and ci, i = 0, . . . , 7, are coefficients to be adequately

chosen. If we do the derivative of (3.2), we obtain acceleration, jerk and snap:

1 Hurwitz polynomial is a polynomial whose coefficients are positive real numbers and whose roots’ real
part is zero or negative.

2 Septic polynomial is a polynomial that has 7 as the highest exponent of its terms.

Navigation and obstacle avoidance 25

ẍ(τ) = 7c7τ
6 + 6c6τ

5 + 5c5τ
4 + 4c4τ

3 + 3c3τ
2 + 2c2τ + c1

...
x (τ) = 42c7τ

5 + 30c6τ
4 + 20c5τ

3 + 12c4τ
2 + 6c3τ + 2c2

....
x (τ) = 210c7τ

4 + 120c6τ
3 + 60c5τ

2 + 24c4τ + 6c3.

(3.3)

Now, we set the initial conditions:



ẋ(0) = c0 = ẋ0

ẍ(0) = c1 = ẍ0
...
x (0) = 2c2 =

...
x 0

....
x (0) = 6c3 =

....
x 0,

(3.4)

and the final conditions:



ẋ(1) = c7 + c6 + c5 + c4 + c3 + c2 + c1 + c0 = ẋf

ẍ(1) = 7c7 + 6c6 + 5c5 + 4c4 + 3c3 + 2c2 + c1 = 0

...
x (1) = 42c7 + 30c6 + 20c5 + 12c4 + 6c3 + 2c2 = 0

....
x (1) = 210c7 + 120c6 + 60c5 + 24c4 + 6c3 = 0.

(3.5)

At this point we have eight unknowns ci, i = 0, . . . , 7, and eight conditions (3.4) and

(3.5), so we can build a system of linear homogeneous and non-homogeneous equations:



0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 2 0 0

0 0 0 0 6 0 0 0

1 1 1 1 1 1 1 1

7 6 5 4 3 2 1 0

42 30 20 12 6 2 0 0

210 120 60 24 6 0 0 0





c7

c6

c5

c4

c3

c2

c1

c0


=



ẋ0

ẍ0
...
x 0
....
x 0

ẋf

0

0

0


, (3.6)

and solve it:

Navigation and obstacle avoidance 26

(a) Velocity transition from ẋ0 to ẋf . (b) Acceleration transition.

(c) Jerk transition. (d) Snap transition.

Figure 3.1: An examples of velocity, acceleration, jerk and snap transitions needed
to achieve desired velocity ẋf from initial velocity ẋ0.



c0 = ẋ0

c1 = ẍ0

c2 = 1
2

...
x 0

c3 = 1
6

....
x 0

c4 = −35ẋ0 − 20ẍ0 − 5
...
x 0 − 2

3

....
x 0 + 35ẋf

c5 = 84ẋ0 + 45ẍ0 + 10
...
x 0 +

....
x 0 − 84ẋf

c6 = −70ẋ0 − 36ẍ0 − 15
2

...
x 0 − 2

3

....
x 0 + 70ẋf

c7 = 20ẋ0 + 10ẍ0 + 2
...
x 0 + 1

6

....
x 0 − 20ẋf .

(3.7)

At the end, by replacing (3.7) in (3.2) and in (3.3), we obtain generic profile functions

for the desired velocity, acceleration, jerk and snap, which depend on initial conditions

(ẋ0, ẍ0,
...
x 0,

....
x 0) and desired velocity ẋf . In a similar way, the transition functions for y

and z axes can be computed. This method can be also extend for computing the desired

velocity (ψ̇d) and accelerations (ψ̈d) for the yaw orientation.

Navigation and obstacle avoidance 27

An example of so obtained transition functions is depicted in Figure 3.1. At the

initial time τ0 = 0s, the quadrotor is stationary (ẋ0 = 0m/s, ẍ0 = 0m/s2,
...
x 0 = 0m/s3,

....
x 0 = 0m/s4) and, at the final time τf = 1s, it reaches the desired velocity (ẋf = 1m/s).

3.2 Obstacle avoidance

Let consider an Euclidean workspace W = R3, where the robot B ⊂ R3 is free to

translate. Let Oi ⊂ W, i = 1, . . . , p, be the obstacles. Let assume that the geometry

and the position of each Oi is known. The obstacle avoidance is the problem of moving

B in W while avoiding collisions with the obstacles Oi. The obstacle avoidance problem

is important for mobile robots.

If the quadrotor can be described by a sphere inW, its configuration can be defined

by the Cartesian coordinates of a representative point. Note that the orientation of the

sphere is irrelevant for collision checking. An effective scheme for obstacle avoidance is

obtained by representing the quadrotor as a point in the configuration space C = W,

where the images of the obstacles are also reported. For this reason, it is natural to

choose as the generalized coordinates of the quadrotor:

q =
[
q1 q2 q3

]T
=
[
x y z

]T
, (3.8)

whose values identify the configuration of the robot. Thus, to each configuration q is

associated a point in C and C is the set of all configurations that the quadrotor can

assume.

In order to find a solution to the obstacle avoidance problem, it is necessary to

convert the obstacles from W in C. Given an obstacle Oi in W, its image in C is called

C-obstacle and is defined as in [12]:

COi = {q ∈ C : B(q) ∩ Oi 6= ∅} . (3.9)

Thus, COi contains the configurations that cause a collision between the quadrotor B
and the obstacle Oi in the workspace. A growing procedure is applied to obstacles in

W in order to obtain their image in C. In particular, the boundary of COi is the set

of configurations that put the quadrotor in contact with the obstacle Oi. In our case,

to build COi it is sufficient to grow Oi by the radius of the sphere which describes the

quadrotor. The union of all C-obstacles

Navigation and obstacle avoidance 28

CO =

p⋃
i=1

COi (3.10)

defines the C-obstacle region, while its complement

Cfree = C − CO =

{
q ∈ C : B(q) ∩

(
p⋃
i=1

Oi

)
6= ∅

}
(3.11)

is the free configuration space, Cfree is the subset of C that do not cause collisions with

the obstacles.

3.2.1 Artificial potential fields

The artificial potential fields method provides a simple and effective technique for on-line

obstacle avoidance applications. This approach uses repulsive potential fields around the

obstacles to force the quadrotor move away from them. Essentially in our case, the point

that represents the quadrotor in C moves only under the influence of a repulsive potential

field Ur from the C-obstacle region. At each robot configuration q ∈ Rn, the robot

experiences a generalized force equal to the negative gradient of the potential −∇Ur(q),

which indicates the most promising direction for local motion. In obstacle avoidance,

potentials are expressed in the configuration space C of the quadrotor. Each obstacle

Oi to be avoided is surrounded by repulsive potential functions. These potentials are

added to form a composite potential and the quadrotor moves in this field of forces. It

is simple to provide a linear control law with constant gain, like the one in (3.1).

The repulsive potential Ur is used to prevent the quadrotor from colliding obstacles

as it moves under the influence of the user command. In particular, the idea is to build a

barrier potential in the proximity of the C-obstacle region, so as to push away the point

that represents the quadrotor in C.

For each component COi define an associated repulsive potential [13]:

Ur,i(q) =


kr
γ

(
1

ηi(q)
− 1

η0

)γ
, if ηi(q) ≤ η0

0, if ηi(q) > η0

, (3.12)

where kr > 0 is the repulsive gain, γ is the potential slope, ηi(q) = ‖q − qi‖ is the

distance of q from COi and η0 is the range of influence of the obstacles. An example of

a repulsive potential field in the two-dimensional configuration space C with a circular

Navigation and obstacle avoidance 29

Figure 3.2: A repulsive potential field in the two-dimensional configuration space
with a circular obstacle.

obstacle is shown in Figure 3.2 (the potential is limited up to 1J/kg). The potential Ur,i

is zero outside and positive inside the range of influence η0 and tends to infinity at the

boundary of COi.

The repulsive force resulting from deriving (3.12) is

Fr,i(q) = −∇Ur,i(q) =


kr

η2i (q)

(
1

ηi(q)
− 1

η0

)γ−1
∇ηi(q), if ηi(q) ≤ η0

0, if ηi(q) > η0

. (3.13)

The total repulsive force is obtained by adding the individual forces (3.13) associated

with the components of COi and normalizing over the number of obstacles:

Fr(q) =

∑p
i=1 Fr,i(q)

p
. (3.14)

The force field Fr(q) (3.14) is interpreted as the repulsive velocity q̇r for the quadrotor

[12], by letting

q̇r = Fr(q). (3.15)

This strategy is fast in executing the motion corrections suggested by the force field Fr

and may be considered safer. Using (3.15) guarantees also that in absence of obstacles

Navigation and obstacle avoidance 30

Figure 3.3: Bounding sphere surrounding schematic quadrotor structure.

the quadrotor has no velocity. In order to calculate the repulsive acceleration q̈r, jerk
...
q r and snap

....
q r, (3.15) is derived over time [14]:

q̈r =
∂q̇r
∂t

=
∂q̇r
∂q

∂q

∂t
= ∇q̇rq̇

...
q r =

∂q̈r
∂t

=
∂q̈r
∂q

∂q

∂t
= ∇q̈rq̇

....
q r =

∂
...
q r
∂t

=
∂

...
q r
∂q

∂q

∂t
= ∇

...
q rq̇.

3.2.2 Application to quadrotor

The C-obstacle region is build in order to ensure the obstacle avoidance having regard to

the overall dimensions of the aircraft, which may be considered contained in a bounding

sphere (as in Figure 3.3) of radius

R = l +
lp
2
,

in which lp is the length of the quadrotor propeller. The quadrotor can be considered

point-like, if all obstacles are extended using the same bounding sphere of the quadrotor.

Navigation and obstacle avoidance 31

As a consequence of this choice, the minimum distance of quadrotor from an obstacle in

the configuration space C depends only on its distance from the position
[
x y z

]
and

the following relationship is valid:

η
′
i(q) =

ηi(q)−R, if ηi(q) ≥ R

0, if ηi(q) < R
,

Another consequence of this choice is that the obstacles do not affect the yaw. So the

repulsive force on the yaw is zero under all conditions.

Now, we have to choose how to apply the resulting force Fr(q) generated through

artificial potential field to the quadrotor feedback linearizzation. For this purpose we

can define a vector of four repulsive inputs vr =
[
vr,1 vr,2 vr,3 vr,4

]T
:

vr,1 =
....
q r,1 +

3∑
i=1

kx,iq
(i)
r,1

vr,2 =
....
q r,2 +

3∑
i=1

ky,iq
(i)
r,2

vr,3 =
....
q r,3 +

3∑
i=1

kz,iq
(i)
r,3

vr,4 = 0,

where kx,i, ky,i and kz,i, i = 1, . . . , 3, are the same as in (3.1). The vector of forces then

enters in the control as desired snap for the position and as desired angular acceleration

of the yaw. At the end, the input law, which commands the linearized system (2.24), is

v = vd + vr.

Chapter 4

Simulation results

Extensive simulations were made considering different parametric uncertainties. Some

of the obtained results are presented in the following to illustrate the performance of the

proposed controller.

4.1 Numerical simulations

Now, we are going to show some simulations carried out in R©MATLAB about the

controller described so far. R©MATLAB is the high-level programming language and

interactive environment used by engineers and scientists worldwide. It allows to explore

and visualize processes across various disciplines, including signal and image processing,

communications and control systems.

The quadrotor intrinsic parameters are reported in Table 4.1. These parameters

are chosen close to the ones of real quadrotors. The controller gains for (3.1) are chosen

as follows:

Parameter Value Unit

b 10−5 [N · s2]
d 10−7 [N ·m · s2]
g 9.81 [m/s2]

Ix 1 [kg ·m2]

Iy 1 [kg ·m2]

Iz 1 [kg ·m2]

l 0.2 [m]

m 1 [kg]

Table 4.1: The quadrotor intrinsic parameters.

32

Simulation results 33

kx,0 = ky,0 = kz,0 = 625

kx,1 = ky,1 = kz,1 = 500

kx,2 = ky,2 = kz,2 = 150

kx,3 = ky,3 = kz,3 = 20

kψ,0 = kψ,1 = 4.

The quadrotor is initially in hovering and the initial pose is x(0) = 0, y(0) = 0, z(0) = 0

and ψ(0) = 0. So, the quadrotor initial state (2.22) is

x̂0 =
[

0 0 0 0 0 0 0 0 0 0 0 0 m · g 0
]T
.

4.1.1 DFL tests

In this subsection we test the DFL controller (2.23) alone. In the first simple case, the

quadrotor follows the circular trajectory. In the second more complex situation, the

quadrotor follows the helicoidal trajectory while pointing towards the direction of the

movement.

Circular trajectory

In this simple case, the reference trajectory is a circle with unitary radius centred in

(0, 0, 1)m on xy-plane whose equations are given by

yc,d(t) =
[
cos(t) sin(t) 1 0

]T
. (4.1)

In order to use the controller in (3.1) we need also the desired velocity, acceleration, jerk

and snap, which can be computed deriving (4.3):

ẏc,d(t) =
[
− sin(t) cos(t) 0 0

]T
ÿc,d(t) =

[
− cos(t) − sin(t) 0 0

]T
...
y c,d(t) =

[
sin(t) − cos(t) 0 0

]T
....
y c,d(t) =

[
cos(t) sin(t) 0 0

]T
.

Simulation results 34

Figure 4.1: 3D plot of circle tracking on xy-plane with DFL.

Figure 4.1 shows in 3D space the realized trajectory (in blue) with the desired one

(in green). We can observe that the two trajectories overlap perfectly. In Figure 4.2 we

can see how x, y, z and ψ converge to the desired values. The trajectories are projected

over four controllable outputs: x (Figure 4.2a), y (Figure 4.2b), z (Figure 4.2c) and ψ

(Figure 4.2d).

Helicoidal trajectory with variable yaw

In this case, the reference trajectory is a vertical helix centred in xh = 0 and yh = 0.

While moving the quadrotor points always towards the direction of the movement. This

trajectory is given by

yh,d(t) =
[
sin(2t) cos(2t) 1 + 1

10 t −2t
]T
. (4.2)

In order to use the controller in (3.1) we need also the desired velocity, acceleration, jerk

and snap, which can be computed deriving (4.2):

Simulation results 35

(a) Trajectory of x. (b) Trajectory of y.

(c) Trajectory of z. (d) Trajectory of ψ.

Figure 4.2: Tracking of a circle on xy-plane with DFL. Plots of desired (dashed green
line) and realized (solid blue line) trajectories.

ẏh,d(t) =
[
2 cos(2t) −2 sin(2t) 1

10 −2
]T

ÿh,d(t) =
[
−4 sin(2t) −4 cos(2t) 0 0

]T
...
yh,d(t) =

[
−8 cos(2t) 8 sin(2t) 0 0

]T
....
y h,d(t) =

[
16 sin(2t) 16 cos(2t) 0 0

]T
.

Figure 4.3 shows in 3D space the realized trajectory (in blue) with the desired one

(in green). As we can observe, after the initial transitional part, the quadrotor follows

perfectly the desired trajectory. In Figure 4.4 we can see how x, y, z and ψ converge

to the desired values. The trajectories are projected over four controllable outputs: x

(Figure 4.4a), y (Figure 4.4b), z (Figure 4.4c) and ψ (Figure 4.4d). The yaw orientation

ψ is defined between 0 and 2π (cyan dotted line in Figure 4.4d). By the definition of

Simulation results 36

Figure 4.3: 3D plot of vertical helix tracking with DFL.

manifold1, 0 is a neighbourhood of 2π. So after a complete rotation the orientation goes

back to 0 or to 2π.

4.1.2 Obstacle avoidance tests

In this subsection we test the behaviour of the quadrotor under the influence of artificial

potential fields (3.13). First, we show the case with only one obstacle. After while, the

scenario with multiple obstacles and a driven command will be presented.

Single obstacle

In this simple case, the quadrotor workspace W ⊂ R2 and contains only one circular

obstacle with radius of 1m and situated in (1, 1)m. The quadrotor starts in (0, 0)m and

has no external commands from the operator.

The artificial potential field related to the obstacle is the one depicted in Figure 3.2.

The reaction of the quadrotor to the obstacle (red area) is shown in Figure 4.5. In the

1 A manifold is a topological space in which each n-dimensional point has a neighbourhood that is
homeomorphic to the n-dimensional Euclidean space.

Simulation results 37

(a) Trajectory of x. (b) Trajectory of y.

(c) Trajectory of z. (d) Trajectory of ψ.

Figure 4.4: Tracking of a vertical helix with DFL. Plots of desired (dashed green line)
and actual (solid blue line) trajectories.

Figure 4.5: Reaction of the quadrotor to the obstacle.

Simulation results 38

Figure 4.6: Artificial potential field related to the obstacles and to the command.

absence of the commands the quadrotor simply moves away from the obstacle, since it

goes out of obstacle’s range of influence (red dotted curve). The blue line represents the

path of the quadrotor connecting initial and final positions.

Multiple obstacles and command

As in the previous case, the quadrotor workspace W ⊂ R2, but contains two circular

obstacles: the first one has radius of 1m and situated in (1, 1)m, the second one has

radius of 2m and situated in (8,−2)m. The quadrotor starts in (0, 0)m and has the

constant positive commands from the operator along x-axis of 1m/s.

The artificial potential field related to the obstacles and to the command is depicted

in Figure 4.6. The quadrotor can be imagined as a ball which moves under the action of

the gravitational force. The white curve connecting initial and final positions represents

the movement of the quadrotor.

The reaction of the quadrotor to the obstacle (red area) is shown in Figure 4.7. In

the absence of the commands the quadrotor simply moves away from the obstacle, since

it goes out of obstacle’s range of influence (red dotted curve). The blue line represents

the path of the quadrotor connecting initial and final positions.

Simulation results 39

Figure 4.7: Reaction of the quadrotor to the obstacle.

4.1.3 DFL with obstacle avoidance tests

Now, we can perform a complete simulation with DFL controller and obstacle avoidance.

The desired trajectory is a unitary circle with fixed height centred in (0, 0, 1)m on xy-

plane. In addition, the quadrotor has to be oriented towards the center of the circle. So,

the equations of the desired trajectory are given by:

yc,d(t) =
[
cos(2t) sin(2t) 1 2t+ π

]T
. (4.3)

In order to use the controller in (3.1) we need also the desired velocity, acceleration, jerk

and snap, which can be computed deriving (4.3):

ẏc,d(t) =
[
−2 sin(2t) 2 cos(2t) 0 2

]T
ÿc,d(t) =

[
−4 cos(2t) −4 sin(2t) 0 0

]T
...
y c,d(t) =

[
8 sin(2t) −8 cos(2t) 0 0

]T
....
y c,d(t) =

[
16 cos(2t) 16 sin(2t) 0 0

]T
.

Simulation results 40

Figure 4.8: 3D plot of circle tracking in presence of an obstacle.

Furthermore, in the quadrotor’s workspace W ⊂ R3 are present two spherical

obstacles with radius of 0.5m and situated in (−1, 0, 1.5)m and in (1, 1, 1)m. So, the

quadrotor’s path intersects the obstacles.

Figure 4.8 shows in 3D space the realized trajectory (in blue) with the desired one

(in green). We can observe that the two trajectories overlap perfectly due to the presence

of the obstacles. The top view of the motion is reported in Figure 4.9. In Figure 4.10 we

can see how x, y, z and ψ converge to the desired values. The trajectories are projected

over four controllable outputs: x (Figure 4.10a), y (Figure 4.10b), z (Figure 4.10c) and

ψ (Figure 4.10d).

4.2 Dynamical simulations

After the development of the numerical tests, the quadrotor was implemented in Robot

Operating System (ROS) and in GAZEBO. On the one hand, ROS is a flexible framework

for writing robot software. It is a collection of tools, libraries, and conventions that aim

to simplify the task of creating complex and robust robot behaviour across a wide variety

of robotic platforms. On the other hand, Gazebo offers the ability to accurately and

efficiently simulate populations of robots in complex indoor and outdoor environments.

Simulation results 41

Figure 4.9: Top view of circle tracking in presence of an obstacle.

(a) Trajectory of x. (b) Trajectory of y.

(c) Trajectory of z. (d) Trajectory of ψ.

Figure 4.10: Tracking of a circle in presence of an obstacle. Plots of desired (dashed
green line) and realized (solid blue line) trajectories.

Simulation results 42

Figure 4.11: CAD model of Pelican quadrotor with Kinect depth sensor.

It has a robust physics engine, high-quality graphics, and convenient programmatic and

graphical interfaces.

In order to perform dynamical simulations the 3D CAD model of Pelican quadrotor

with Kinect depth sensor was built (Figure 4.11). For the dynamical simulation we need

to recompute the dynamic parameters of the quadrotor. The quadrotor’s body can be

decomposed in a set of cuboids and cylinders. The inertia matrix (2.6) for a cuboid of

width wcub, height hcub, depth dcub and mass mcub is computed in Appendix C.1 and is

given by

Icub =
mcub

12


h2cub + d2cub 0 0

0 w2
cub + d2cub 0

0 0 w2
cub + h2cub

 .
The inertia matrix (2.6) for a cylinder of radius rcyl, height hcyl and mass mcyl is com-

puted in Appendix C.2 and is given by

Simulation results 43

Figure 4.12: Block diagram of ROS nodes and ROS topics.

Icyl =
mcyl

12


3r2cyl + h2cyl 0 0

0 3r2cyl + h2cyl 0

0 0 6r2cyl

 .
In Figure 4.12 is shown the block diagram of ROS nodes and ROS topics cre-

ated with rqt graph, which provides a visualization of ROS computation graph. The

block labelled GAZEBO simulates the environment, the quadrotor and laser sensor.

While the environment and the quadrotor are displayed in the graphical simulator, the

data collected by the sensor are published on corresponding topic. The block Feedback

Controller, implemented in C++, calculates the motors angular velocities required to

perform the command and applies them to the quadrotor in the simulated environment

via GAZEBO’s API.

In dynamic simulations, as in real situations, we do not use x and y position of

the quadrotor. The height we measure with the simulated sonar. The velocities along

x-axis and y-axis we get from optical flow, which uses the images from simulated ver-

tical camera. The velocity along z-axis is obtained from the derivative of the height.

GAZEBO does not allow to access to the object’s acceleration, so this value is computed

analytically from the dynamic model (2.9) of quadrotor, as well as its jerk. We can get

attitude and angular velocities directly from GAZEBO and we add to them white Gaus-

sian noise. However, in the simulations made in GAZEBO we found that the integration

engine creates a large numerical noise. This behaviour is well visible analysing the trend

of the angular velocity. In order to obtain the point cloud of the environment, we use a

simulated 3D sensor.

Simulation results 44

4.2.1 Circle tracking

In this subsection we test the DFL controller (2.23). The task of the quadrotor is to

follow the circular trajectory. In addition, the quadrotor has to be oriented towards the

center of the circle. So, the equations of the desired trajectory are given by:

yc,d(t) =
[
cos(t) sin(t) 1 2t+ π

]T
. (4.4)

In order to use the controller in (3.1) we need also the desired velocity, acceleration, jerk

and snap, which can be computed deriving (4.4):

ẏc,d(t) =
[
− sin(t) cos(t) 0 2

]T
ÿc,d(t) =

[
− cos(t) − sin(t) 0 0

]T
...
y c,d(t) =

[
sin(t) − cos(t) 0 0

]T
....
y c,d(t) =

[
cos(t) sin(t) 0 0

]T
.

But since we do not use the quadrotor position x and y, in order to correct its trajectory,

we have to take into account the initial conditions at t = 0 for x-axis and y-axis:



xc,d(0) = 1

ẋc,d(0) = 0

ẍc,d(0) = −1

...
x c,d(0) = 0

....
x c,d(0) = 1

and



yc,d(0) = 0

ẏc,d(0) = 1

ÿc,d(0) = 0
...
y c,d(0) = −1
....
y c,d(0) = 0

.

Therefore, we need to reach these conditions before starting to follow the trajectory. To

this purpose we use two nonic polynomials2 as transition functions for x and y:

xc,d(τ) =

9∑
i=0

cx,iτ
i and yc,d(τ) =

9∑
i=0

cy,iτ
i,

2 Nonic polynomial is a polynomial that has 9 as the highest exponent of its terms.

Simulation results 45

(a) Velocity transition from ẋ0 to ẋf . (b) Acceleration transition.

(c) Jerk transition. (d) Snap transition.

Figure 4.13: An examples of profiles of transitory velocities, accelerations, jerks and
snaps needed for circle tracking. The red curves are functions on x-axis and the blue

curves are functions on y-axis.

in which cx,i and cy,i, i = 0, . . . , 9, are coefficients to be adequately chosen and τ ∈ [0, 2π]

is normalized time. We proceed as described in Subsection 3.1.2, in order to find cx,i

and cy,i, i = 0, . . . , 9. The resulting profiles of transitory functions are depicted in

Figure 4.13: velocities (Figure 4.13a), accelerations (Figure 4.13b), jerks (Figure 4.13c)

and snaps (Figure 4.13d). Note that at time τ = 2π we have the discontinuities of the

second order.

Figure 4.14 shows the realized trajectory on xy-plane (in blue-red) with the desired

one (in green). In Figure 4.15 we can see the behaviour of the single components: x

(Figure 4.15a), y (Figure 4.15b), z (Figure 4.15c) and ψ (Figure 4.15d). We can note

that x and y diverge, it is caused by the absence of reference of x and y positions. On

the other side, z remains on its initial and desired value and ψ converges to the desired

orientation.

Simulation results 46

Figure 4.14: 3D plot of circle tracking on xy-plane with DFL.

(a) Trajectory of x. (b) Trajectory of y.

(c) Trajectory of z. (d) Trajectory of ψ.

Figure 4.15: Tracking of a circle on xy-plane with DFL. Plots of desired (dashed
green line) and realized (solid blue line) trajectories.

Simulation results 47

Figure 4.16: Top view of a small labyrinth and quadrotor’s path (blue curve).

4.2.2 Travelling in labyrinth

Now, we want to make the quadrotor travel in a small labyrinth depicted in Figure 4.16

without hitting walls. By imposing a command from the operator the quadrotor moves

in the desired direction avoiding the obstacles. The quadrotors always points toward

the direction of the desired motion. This is obtained by setting:

ψd = atan2(ẏd, ẋd),

where atan2 is defined in (−π, π] and can be expressed as follows:

atan2(y, x) =



arctan yx , if x > 0

arctan yx + π, if y ≥ 0 and x < 0

arctan yx − π, if y < 0 and x < 0

π
2 , if y > 0 and x = 0

−π
2 , if y < 0 and x = 0

0, if y = 0 and x = 0

.

In this simulation, the robot starts in the big left room (as shown in the figure) and

successfully reach the right part of the labyrinth.

Chapter 5

Experimental results

In this chapter will be introduced the entire set-up developed in order to perform ex-

periments.

5.1 Hardware system

Entire set-up comprises flying system which represents the quadrotor with its sensors

and remote ground station used for controling the quadrotor and for setting the on-board

parameters.

Figure 5.1: AscTec Pelican quadrotor.

48

Experimental results 49

Parameter Value

Size 651×651×188 mm

Engines 4 electrical, brushless motors

Rotor diameter 254 mm

Empty weight 620 g

Maximum payload 650 g

Flight time (with payload) 16 min

Maximum range 1000 m

Maximum airspeed 16 m/s

Maximum climb rate 8 m/s

Maximum thrust 36 N

Wireless communication XBee: 2,4 GHz, WiFi

Inertial guidance system AscTec AutoPilot with 1,000 Hz update rate

On-board computer 3rd Generation Intel R©CoreTMi7 processor

Table 5.1: Technical data of AscTec Pelican quadrotor.

5.1.1 Quadrotor

Aircraft used to develop the experimental set-up is the Asctec Pelican quadrotor de-

picted in Figure 5.1. The AscTec Pelican is the packhorse amongst AscTec’s Research

Line UAVs. This quadrotor offers plenty of space and various interfaces for individual

components and payloads. The two-time International Aerial Robotics Competition

champion is the key to unlimited experiments. High quality standards in production

guarantee reliability and safety of this aerial robot. The technical data of AscTec Peli-

can quadrotor are reported in Table 5.1.

Asctec Pelican essential characteristics:

• The inertial guidance system provides highest precision through advanced sensor

components and two ARM71 microprocessors.

• The control unit provides highest flexibility. Latest interfaces simplify the imple-

mentation of C-code algorithms.

• The Low Level Processor (LLP) ensures a highly stable flight behaviour of the

flight system. The LLP is the data controller which processes all sensor data and

performs the data fusion of all relevant information with an update rate of 1 kHz.

• The High Level Processor (HLP) takes control over the flight system according to

the C-code algorithms.

1 ARM7 is a group of older 32-bit ARM processor cores.

Experimental results 50

Figure 5.2: ASUS Xtion PRO LIVE.

• Safe testing thanks to the Safety Switch function. While testing control commands

and manoeuvres, one can simply switch back into safe mode and the AscTec Au-

toPilot takes back the control.

• The energy-efficient engines work with only 100 Watt per motor.

• The AscTec Pelican is proven and tested as a useful research tool in challenging

conditions.

• The possibility of receiving quadrotor status via a serial port makes this platform

an excellent base to start developing autonomous behaviours.

5.1.2 RGB-D sensor

The ASUS Xtion PRO LIVE (in Figure 5.2) is the world’s first and exclusive professional

PC motion sensing development solution. Its multiple sensing functions makes devel-

opment easier. The Xtion uses infra-red sensors, adaptive depth detection technology,

color image sensing and audio stream to capture a real-time image, movement and voice.

The Xtion development solution comes with a set of developer tools to make it easier

for developers to create their own depth-based applications without the need to write

complex programming algorithms. In addition, with Xtion PRO series, developers are

offered more options and tools to develop their own applications. The technical data of

ASUS Xtion PRO LIVE camera are reported in Table 5.2.

ASUS Xtion PRO LIVE essential characteristics:

• The Xtion PRO LIVE development solution allows developers to track a move-

ment, which makes it ideal for controlling.

• Xtion PRO LIVE enables color (RGB) image sensing. With RGB, Xtion PRO

LIVE can capture the image, which is useful for many applications.

Experimental results 51

Parameter Value

Size 180×35×50 mm

Power consumption < 2,5 W

Distance of use 0,8 m − 3,5 m

Field of view horizontal: 58◦, vertical: 45◦, diagonal: 70◦

Sensors RGB camera, depth camera, 2×microphone

RGB image size SXGA (1280×1024): 30 fps

Depth image size VGA (640×480): 30 fps, QVGA (320×240): 60 fps

Platforms Intel X86, AMD

Interface USB 2.0, USB 3.0

Programming languages C++, C#, Java

Operation environment indoor

Table 5.2: Technical data of AscTec Pelican quadrotor.

(a) An example of RGB image. (b) An example of depth map.

Figure 5.3: An example of raw data from ASUS Xtion.

• The Xtion PRO LIVE development solution allows developers to apply the latest

depth-sensing technology in various applications. The Xtion PRO LIVE develop-

ment kit is widely open. One can create his own applications more convenient and

intuitive.

• The Xtion PRO LIVE has an easy plug and play USB design.

• The Xtion PRO LIVE is OPENNI compatible.

ASUS Xtion provides simultaneously 1280× 1024 RGB video stream at 30 Hz rate

(Figure 5.3a) and a 640 × 480 pixel monochrome intensity coded depth map2 at 30 Hz

(Figure 5.3b). Low cost, reliability and speed of the measurement promises to make

Xtion the primary 3D measuring devices in indoor robotics, 3D scene reconstruction

2 Depth map is an image that contains information relating to the distance of scene objects from a
viewpoint.

Experimental results 52

Figure 5.4: The point cloud reconstructed from the RGB image in Figure 5.3a and
the depth map in Figure 5.3b.

and object recognition. This device connects using USB 2.0 or USB 3.0 interface3. The

protocol to access the Xtion data is open4 and a software to read them already exists.

Main raw output of ASUS Xtion is an image that corresponds to the depth in the

scene. Rather than providing the actual depth Z, Xtion returns inverse depth. Com-

putation of depth maps can be grouped into passive or active methods. Passive depth

sensing tries to infer depth from multiple cameras or images, for example, through stereo

correspondence algorithms or optical flow. Active methods usually employ additional

physical sensors such as lasers, structured lighting, or infra-red illumination cast on the

scene. Xtion uses a form of structured light5. Depth sensor consists of an infra-red laser

projector combined with a monochrome CMOS sensor. Spatial resolution (X and Y) of

the depth sensor at 2 m from the it is 3 mm, while the depth resolution (Z) at the same

distance is 10 mm.

In order to obtain a point cloud from the depth map, we use the algorithm described

in Appendix D. Figure 5.4 shows the point cloud reconstructed from the RGB image in

Figure 5.3a and the depth map in Figure 5.3b. In our application we build the colorless

point cloud, thus we do not need the informations from the RGB camera.

3 Additional current is not required.
4 OpenNI SDK is bundled.
5 Developed and patented by PrimeSense.

Experimental results 53

Figure 5.5: Correspondences between AscTec motor velocity and real angular velocity
and the corresponding regression line.

5.2 Parameters estimation

5.2.1 Speed conversion

AscTec Pelican quadrotor low level controller treats the motors velocity as an positive

integer between 0 and 200 (0 is the minimum speed and 200 is the maximum speed). To

estimate the conversion factors from the real motor angular velocity ωRPM expressed in

rotation per minute to the AscTec motor velocity ωAT , we directly set the motor turning

speed in AscTec units and measure the resulting turning speed with a laser tachometer.

After a batch of sixteen measurements was collected {〈ωRPM1 , ωAT1〉 , . . . , 〈ωRPM16 , ωAT16〉},
we noticed that the transformation is linear (shown in Figure 5.5):

ωAT = k1ωRPM + k0,

so the linear regression was applied6:

6A+ indicates the pseudo-inverse of matrix A.

Experimental results 54

[
k̃0

k̃1

]
=


1 ωRPM1

...
...

1 ωRPM16


+ 

ωAT1
...

ωAT16

 .

We obtained k0 = −29, 92 and k1 = 0, 027 and are the same for four motors. Afterwards

these values were confirmed by AscTec.

5.2.2 Thrust coefficient

Once we are able to convert the motor angular velocity from AscTec units to rotation

per minute, we can proceed with the estimation of the propellers thrust coefficient b.

To estimate b we replace the first equation from 2.2 into the seventh, eighth and ninth

equations from 2.9 and we obtain

ax = − 1

m
(cosφ cosψ sin θ + sinφ sinψ)

(
bω2

1 + bω2
2 + bω2

i + bω2
i

)
ay = − 1

m
(cosφ sinψ sin θ − cosψ sinφ)

(
bω2

1 + bω2
2 + bω2

i + bω2
i

)
az = − 1

m
cosφ cos θ

(
bω2

1 + bω2
2 + bω2

i + bω2
i

)
+ g.

(5.1)

Extracting b from 5.1, we can compute it:

b = −m


(cosφ cosψ sin θ + sinφ sinψ)

(
ω2
1 + ω2

2 + ω2
i + ω2

i

)
(cosφ sinψ sin θ − cosψ sinφ)

(
ω2
1 + ω2

2 + ω2
i + ω2

i

)
cosφ cos θ

(
ω2
1 + ω2

2 + ω2
i + ω2

i

)

+ 

ax

ay

az − g

 .

We collected a batch of h measurements7 ω̃1i, ω̃2i, ω̃3i, ω̃4i, φ̄i, θ̄i, ψ̄i, āxi , āyi

and āzi from the UAV’s IMU and Autopilot. Finally, stacking up 3h equations we can

estimate b̃:

7 ã indicates the estimated value of a; ā indicates the measured value of a.

Experimental results 55

b̃ = m̄



(
cos φ̄1 cos ψ̄1 sin θ̄1 + sin φ̄1 sin ψ̄1

) (
ω̃2
11

+ ω̃2
21

+ ω̃2
31

+ ω̃2
41

)(
cos φ̄1 sin ψ̄1 sin θ̄1 + cos ψ̄1 sin φ̄1

) (
ω̃2
11

+ ω̃2
21

+ ω̃2
31

+ ω̃2
41

)
cos φ̄1 cos θ̄1

(
ω̃2
11

+ ω̃2
21

+ ω̃2
31

+ ω̃2
41

)
...(

cos φ̄h cos ψ̄h sin θ̄h + sin φ̄h sin ψ̄h
) (
ω̃2
1h

+ ω̃2
2h

+ ω̃2
3h

+ ω̃2
4h

)(
cos φ̄h sin ψ̄h sin θ̄h + cos ψ̄h sin φ̄h

) (
ω̃2
1h

+ ω̃2
2h

+ ω̃2
3h

+ ω̃2
4h

)
cos φ̄h cos θ̄h

(
ω̃2
1h

+ ω̃2
2h

+ ω̃2
3h

+ ω̃2
4h

)



+ 

āx1

āy1

āz1 + ḡ
...

āxh

āyh

āzh + ḡ


.

With the help of Matlab we obtain that b̃ = 2, 1 · 10−5N · s2.

If we want to compute the thrust factors individually for each propeller b1, b2, b3

and b4, instead of the first equation of 2.2, we have to consider the following one

T = b1ω
2
1 + b2ω

2
2 + b3ω

2
3 + b4ω

2
4,

which gives us

ax = − 1

m
(cosφ cosψ sin θ + sinφ sinψ)

(
b1ω

2
1 + b2ω

2
2 + b3ω

2
i + b4ω

2
i

)
ay = − 1

m
(cosφ sinψ sin θ − cosψ sinφ)

(
b1ω

2
1 + b2ω

2
2 + b3ω

2
i + b4ω

2
i

)
az = − 1

m
cosφ cos θ

(
b1ω

2
1 + b2ω

2
2 + b3ω

2
i + b4ω

2
i

)
+ g,

from which we can extract b1, b2, b3 and b4 and then estimate b̃1, b̃2, b̃3 and b̃4 as showed

before. Again with the help of Matlab we obtain that b̃1 ≈ b̃2 ≈ b̃3 ≈ b̃4 ≈ 2, 1·10−5N · s2.

5.2.3 Drag coefficient and moments of inertia

Once we have the thrust coefficient b, we can proceed with the estimation of the quadro-

tor moments of inertia Ix, Iy, Iz and propellers drag coefficient d [15]. To estimate Ix,

Iy, Iz and d we replace the last three equations from 2.2 into the last three equations

from 2.9 and obtain

Experimental results 56

ṗ =
Iy − Iz
Ix

qr +
−lbω2

2 + lbω2
4

Ix

q̇ =
Iz − Ix
Iy

pr +
−lbω2

1 + lbω2
3

Iy

ṙ =
Ix − Iy
Iz

pq +
dω2

1 − dω2
2 + dω2

3 − dω2
4

Iz
.

(5.2)

Extracting Ix, Iy, Iz and d from 5.2 we can write:


Ix

Iy

Iz

d

 = lb


−ṗ qr −qr 0

−pr −q̇ pr 0

pq −pq −ṙ ω2
1 − ω2

2 + ω2
3 − ω2

4


+ 

ω2
2 − ω2

4

ω2
1 − ω2

3

0



We use the batch of h measurements collected from the UAV’s IMU and Autopilot

for the thrust estimation in Subsection 5.2.2. Finally, stacking up 3h equations we can

estimate Ĩx, Ĩy, Ĩz and d̃:


Ĩx

Ĩy

Ĩz

d̃

 = l̄b̃



− ˜̇p1 q̄1r̄1 −q̄1r̄1 0

−p̄1r̄1 −˜̇q1 p̄1r̄1 0

p̄1q̄1 −p̄1q̄1 −˜̇r1 ω̃2
11
− ω̃2

21
+ ω̃2

31
− ω̃2

41
...

...
...

...

− ˜̇pn q̄nr̄n −q̄nr̄n 0

−p̄nr̄n −˜̇qn p̄nr̄n 0

p̄nq̄n −p̄nq̄n −˜̇rn ω̃2
1n − ω̃

2
2n + ω̃2

3n − ω̃
2
4n



+ 

ω̃2
21
− ω̃2

41

ω̃2
11
− ω̃2

31

0
...

ω̃2
2n − ω̃

2
4n

ω̃2
1n − ω̃

2
3n

0


.

With the help of Matlab we obtain that Ĩx = 1, 3 · 10−2kg ·m2, Ĩy = 1, 2 · 10−2kg ·m2,

Ĩz = 2, 2 · 10−2kg ·m2 and d̃ = 7, 5 · 10−7N ·m · s2.

If we want to compute the drag factors individually for each propeller d1, d2, d3

and d4, instead of the last equation of 2.2, we have to consider the following one

τψ = d1ω
2
1 − d2ω2

2 + d3ω
2
3 − d4ω2

4

and therefore we obtain:

Experimental results 57

ṗ =
Iy − Iz
Ix

qr +
−lbω2

2 + lbω2
4

Ix

q̇ =
Iz − Ix
Iy

pr +
−lbω2

1 + lbω2
3

Iy

ṙ =
Ix − Iy
Iz

pq +
d1ω

2
1 − d2ω2

2 + d3ω
2
3 − d4ω2

4

Iz
,

from which we can extract Ix, Iy, Iz, d1, d2, d3 and d4 and then estimate Ĩx, Ĩy, Ĩz,

d̃1, d̃2, d̃3 and d̃4 as showed before. Again with the help of Matlab we obtain that

the estimated inertia matrices do not change and the drag factors are slightly different

d̃1 ≈ d̃2 ≈ d̃3 ≈ d̃4 ≈ 7, 5 · 10−7N ·m · s2.

5.3 Data filtering

5.3.1 Median filter

When the quadrotor crosses over a step even small, the sonar mounted on the quadrotor

does not receive back the bounced ultrasound signal. As a consequence, it generates

spikes. In order to remove these spikes we use the median filter.

We collect the last h+ 1 raw readings {z̄k−h, . . . , z̄k} from sonar. After while, the

estimated quadrotor height z̃k at current instant k is

z̃k = median({z̄k−h, . . . , z̄k}),

where median() is a function that computes the median8 value. This filter is able to

eliminate up to
⌊
h
2

⌋
spikes. The computational cost of this filter is O(h log h), because

we need to sort the array of h+ 1 elements to compute the median.

In Figure 5.6 is shown the row signal from sonar (blue curve) and the filtered one

(red curve). The filter uses a window of the last eleven values, so it is able to eliminate

up to 5 consecutive spikes. We can observe that the filtered height is not delayed.

8 The median is the number separating the higher half of a vector from the lower half.

Experimental results 58

Figure 5.6: An example of raw quadrotor height from sonar (blue curve) and filtered
value (red curve).

5.3.2 Average filter

The quadrotor angular velocities in body frame p, q and r from on-board IMU are very

noisy. In order to use these data we need to remove noise. To this purpose we use the

moving average filter.

We collect the last h + 1 raw readings {p̄k−h, . . . , p̄k} from the IMU. After while,

the estimated angular velocity p̃k at current instant k is

p̃k =

∑k
i=k−h p̄i

h+ 1
.

In a very similar way we can compute also q̃k and r̃k. If {tk−h, . . . , tk} are the times when

the measurements were taken, the cut-off frequency of this filter is 0,44294h

(tk−tk−h)
√
h2+2h

[Hz]

and its delay is
tk−tk−h

2 [s]. The computational cost of this filter is O(h), due to the sum

of h+ 1 elements.

In Figure 5.7 is shown the row signal from IMU (blue curve) and the filtered one

(red curve). The filter uses a window of the last five values, so its cut-off frequency is

7,487 Hz and its delay is 20 ms.

Experimental results 59

Figure 5.7: An example of raw quadrotor angular velocity from IMU (blue curve)
and filtered value (red curve).

5.3.3 Polynomial fitting

The quadrotor linear accelerations ax, ay and az from on-board accelerometers are noisy.

In order to use these data and to compute the corresponding jerks jx, jy and jz we use

the polynomial fitting.

We collect the last h+ 1 raw readings {āk−h, . . . , āk} given by the accelerometers.

After while, we try to fit a quadratic polynomial (parabola) f(t) = c2t
2 + c1t+ c0 with

collected values āt. To this purpose we use a linear regression:


c0

c1

c2

 =


1 k − h (k − h)2

...
...

...

1 k k2


+ 

āk−h
...

āk

 .

and we find the polynomial coefficients c0, c1 and c2. Now we can compute the estimated

acceleration ãk at current instant k:

ãk = f(k) = c2k
2 + c1k + c0.

If {tk−h, . . . , tk} are the times when the measurements were taken, the delay of this

filter is
tk−tk−h

2 [s]. But the computational cost of this filter is O(h3), due to the pseudo-

inverse of (h + 1) × 3 matrix. In order to improve the computation, we translate the

Experimental results 60

Figure 5.8: An example of raw quadrotor acceleration from accelerometer (blue curve)
and filtered value (red curve).

current instant k to 0. We can observe that the computation of coefficients c0, c1 and

c2 becomes:


c0

c1

c2

 =


1 −h h2

...
...

...

1 0 0


+ 

ā(−h)
...

ā0

 .

Now the matrix which must be pseudo-inverted is constant. So we have to compute the

pseudo-inverse only once. Actually, to compute ãk we need only one coefficient c0:

ãk = f(k)|k=0 = c0.

In Figure 5.8 is shown the row signal from accelerometers (blue curve) and the

filtered one (red curve). The filter uses a window of the last eleven values, so its delay

is 50 ms.

Having the analytical expression of acceleration in the neighbourhood of 0, we can

compute the estimated value of jerk in k:

j̃k =
∂f(k)

∂k

∣∣∣∣
k=0

= c1.

Experimental results 61

Figure 5.9: An example of numerical derivative of jerk (blue curve) and derivation of
jerk with polynomial fitting method (red curve).

In Figure 5.9 is shown the numerical derivative of jerk (blue curve) and derivation of

jerk with new polynomial fitting method (red curve).

Chapter 6

Conclusions

In this study we presented the solution of ensuring a safe navigation in an unknown

environment for a quadrotor vehicle. First of all, we derived a quadrotor model, to

which we applied a controller based on dynamic feedback linearization. Hence, the main

task was to perform effective obstacle avoidance method. Moreover, we relied on the

classical obstacle avoidance technique which uses artificial potential fields. In a first

moment, we considered the hypotheses of quasi-stationary flight and we showed that

the closed-loop behaviour of the resulting linearized system is not acceptable. Thus,

we considered the use of a first-order feed-forward computing suitable inputs for the

controller. At the end, we obtained a control framework which ensures the feasibility of

the commanded trajectory for the original system. Finally, the proposed control schemes

were validated in simulation and on an experimental quadrotor.

The most important limitation of the proposed controller is the requirement to

measure all the state. Therefore, a Kalman filter can be implemented for more precise

quadrotor state estimation. Moreover, in order to obtain the quadrotor position and

linear velocity, the Vicon system can be used. Furthermore, to improve the stability of

the UAV, we need better estimation of its intrinsic parameters (inertia matrix, thrust

and drag coefficients). Alternatively, we can use well known and widely used geometric

controller on SE(3)[16].

62

Appendix A

Rotation matrix

The rotation of a rigid body in space can be parametrized using three Euler angles.

These angles are individually called roll (φ), pitch (θ) and yaw (ψ).

Considering a right-hand oriented coordinate system, the three single rotations are

described by:

• R(x, φ) is the rotation around x-axis by φ;

• R(y, θ) is the rotation around y-axis by θ;

• R(z, ψ) is the rotation around z-axis by ψ.

They are represented by:

R(x, φ) =


1 0 0

0 cosφ − sinφ

0 sinφ cosφ

 ,

R(y, θ) =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ


and

R(z, ψ) =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 .
63

Rotation matrix 64

The complete rotation matrix is the product of the previous three successive rota-

tions:

R(φ, θ, ψ) = R(z, ψ)R(y, θ)R(x, φ)

=


cosψ cos θ cosψ sinφ sin θ − cosφ sinψ sinφ sinψ + cosφ cosψ sin θ

cos θ sinψ cosφ cosψ + sinφ sinψ sin θ cosφ sinψ sin θ − cosψ sinφ

− sin θ cos θ sinφ cosφ cos θ

 .
(A.1)

A.1 Derivative of rotation matrix

Let’s consider a time-varying rotation matrix R from a static frame A to a rotating

frame B. Let pB be a fixed point in frame B and pA be the same point in frame A.

Then

pA = RpB. (A.2)

The time derivative of pA(t) is

ṗA = ṘpB. (A.3)

If the vector ω =
[
ωx ωy ωz

]T
denotes the angular velocity of frame B with

respect to the frame A at time t, it is known from mechanics that

ṗA = ω × pA = [ω]×pA, (A.4)

in which [ω]× denotes the skew-symmetric matrix, given by

[ω]× =


0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 . (A.5)

Combining the (A.2), (A.3) and (A.4) gives

ṘpB = [ω]×pA = [ω]×RpB. (A.6)

Rotation matrix 65

Since pB is chosen arbitrarily, the above equation holds for all pB. Hence, (A.6)

can be rewritten as

Ṙ = [ω]×R.

Appendix B

Lie derivative

Consider a scalar function h : D ⊂ Rn → R, a vector field f : D ⊂ Rn → Rn and a

vector x ∈ D. The Lie derivative of h with respect to f , denoted Lfh, is given by

Lfh(x) =
∂h

∂x
f(x).

Given two vector fields f, g : D ⊂ Rn → Rn, we have that

LgLfh(x) = Lg[Lfh(x)] =
∂(Lfh)

∂x
g(x) (B.1)

and in the special case f = g (B.1) becomes

LfLfh(x) = L2
fh(x) =

∂(Lfh)

∂x
f(x).

66

Appendix C

Inertia matrix

Let I be the inertia matrix given by

I =


Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 .
The quantities Ixx, Iyy and Izz are called moments of inertia with respect to the x,

y and z axis, respectively. The moments of inertia are the sums of all the elemental

particles masses multiplied by their squared distance from the rotational axis and are

given by

Ixx =
N∑
i=1

(
y2i + z2i

)
mi =

∫ M

0

(
y2 + z2

)
dm, (C.1)

Iyy =
N∑
i=1

(
x2i + z2i

)
mi =

∫ M

0

(
x2 + z2

)
dm (C.2)

and

Izz =

N∑
i=1

(
x2i + y2i

)
mi =

∫ M

0

(
x2 + y2

)
dm. (C.3)

The quantity in the integrand is precisely the square of the distance to the x, y and

z axis, respectively. It is also clear, from their expressions, that the moments of inertia

are always positive. The quantities Ixy, Ixz, Iyx, Iyz, Izx and Izy are called products of

inertia. They are given by

67

Inertia matrix 68

Ixy = Iyx = −
N∑
i=1

xiyimi = −
∫ M

0
(xy) dm, (C.4)

Ixz = Izx = −
N∑
i=1

xizimi = −
∫ M

0
(xz) dm,

and

Iyz = Izy = −
N∑
i=1

yizimi = −
∫ M

0
(yz) dm.

C.1 Solid cuboid

Lets compute the inertia matrix Icub of a solid cuboid. The cuboid length is X along

the x-axis, Y along the y-axis, Z along the z-axis and its mass is M.

From the definition of mass M :

M = ρV

and from the definition of cuboid volume V

V = XY Z,

we have

M = ρXY Z, (C.5)

where ρ is the cuboid density. The derivative of (C.5) is

dm = ρdxdydz. (C.6)

Replacing (C.6) in (C.1), one can compute the moment of inertia about the x-axis Ixx:

Inertia matrix 69

Ixx =

∫ Z
2

−Z
2

∫ Y
2

−Y
2

∫ X
2

−X
2

((
y2 + z2

)
ρ
)

dxdydz

= ρ

(
XY 3Z

12
+
XY Z3

12

)
.

(C.7)

Inverting (C.5), one obtain ρ:

ρ =
M

XY Z
,

and replacing it in (C.7) gives

Ixx =
M

12

(
Y 2 + Z2

)
.

The other two moments of inertia Iyy and Izz can be computed in a similar way by using

(C.2) and (C.3). Thus,

Iyy =
M

12

(
X2 + Z2

)
and

Izz =
M

12

(
X2 + Y 2

)
.

In order to compute the xy and yx products of inertia, (C.4) is used:

Ixy =

∫ Z
2

−Z
2

∫ Y
2

−Y
2

∫ X
2

−X
2

(xyρ) dxdydz = 0.

Similarly, Ixz and Iyz are 0.

Finally, the inertia matrix of a cuboid is

Icub =
M

12


Y 2 + Z2 0 0

0 X2 + Z2 0

0 0 X2 + Y 2

 . (C.8)

Due to the symmetry of the cuboid, its inertia matrix Icub is diagonal.

Inertia matrix 70

C.2 Solid cylinder

Lets compute the inertia matrix Icyl of a solid cylinder. The cylinder’s height is H, its

radius is R and its mass is M.

From the definition of mass M :

M = ρV

and from the definition of cylinder’s volume V

V = πR2H,

we have

M = πρR2H, (C.9)

where ρ is the cylinder density. The derivative of (C.9) is

dm = 2πρRdrdh. (C.10)

Replacing (C.10) in (C.1), one can compute the moment of inertia about the x-axis Ixx:

Ixx =

∫ H
2

−H
2

∫ R

0

((
r2 + h2

)
2πρR

)
drdh

= πρ

(
R3H

4
+
R2H2

12

)
.

(C.11)

Inverting (C.9), one obtain ρ:

ρ =
M

πR2H
,

and replacing it in (C.11) gives

Ixx =
M

12

(
3R2 +H2

)
.

Inertia matrix 71

The moment of inertia about the y-axis Iyy is equal to Ixx, because the symmetry of the

cylinder. Thus,

Iyy =
M

12

(
3R2 +H2

)
.

In order to compute the moment of inertia about the z-axis Izz, we replace (C.10) in

(C.3):

Izz =

∫ H
2

−H
2

∫ R

0

((
r2 + h2

)
2πρR

)
drdh

= πρ

(
R3H

4
+
R2H2

12

)
.

(C.12)

Inverting (C.9), one obtain ρ:

ρ =
M

πR2H
,

and replacing it in (C.11) gives

Ixx =
M

12

(
3R2 +H2

)
.

In order to compute the xy and yx products of inertia, (C.4) is used:

Ixy =

∫ Z
2

−Z
2

∫ Y
2

−Y
2

∫ X
2

−X
2

(xyρ) dxdydz = 0.

Similarly, Ixz and Iyz are 0.

Finally, the inertia matrix of a cylinder is

Icyl =
M

12


3R2 +H2 0 0

0 3R2 +H2 0

0 0 6R2

 . (C.13)

Due to the symmetry of the cylinder, its inertia matrix Icyl is diagonal.

Appendix D

Point reprojection

Consider a projective camera matrix P given by

P =


α 0 x0 0

0 α y0 0

0 0 1 0

 ,
in which α represent the focal length of the camera in terms of pixel dimensions and

(x0, y0)
T is the principal point in terms of pixel dimensions. The camera maps a 3D

point (X,Y, Z)T to a 2D point (x, y)T by the following relation


x

y

Z

 = P


X

Y

Z

1

 .

After the point normalization, we obtain

x =
X

Z
α+ x0

y =
Y

Z
α+ y0.

(D.1)

Assuming that the intrinsic camera parameters (α, x0 and y0) are known and that the

depth of the point Z can be estimated, we can compute the position of the point in the

space from (D.1):

72

Point reprojection 73

X =
Z

α
(x− x0)

Y =
Z

α
(y − y0) .

So, the coordinates of the reprojected point (x, y)T are


Z
α (x− x0)
Z
α (y − y0)

Z

 . (D.2)

Bibliography

[1] S. Bouabdallah. Design and Control of Quadrotors with Application to Autonomous

Flying. PhD thesis, 2007.

[2] R. Mahony, V. Kumar, and P. Corke. Multirotor aerial vehicles: Modeling, esti-

mation, and control of quadrotor. Robotics & Automation Magazine, pages 20–32,

2012.

[3] V. Mistler, A. Benallegue, and N.K. M’Sirdi. Exact linearization and noninteract-

ing control of a 4 rotors helicopter via dynamic feedback. In Robot and Human

Interactive Communication, pages 586–593. IEEE, 2001.

[4] S.B.V. Gomes and J.J.G. Ramos. Airship dynamic modelling for autonomous op-

eration. In Robotics & Automation, pages 3462–3467. IEEE, 2001.

[5] H.K. Khalil. Non-Linear System. Prentice Hall, 1996.

[6] A. Isidori. Non-Linear Control System. Springer, 1995.

[7] S.A. Al-Hiddabi. Quadrotor control using feedback linearization with dynamic

extension. In International Symposium on Mechatronics and its Applications

(ISMA09), pages 1–3. IEEE, 2009.

[8] D. Mellinger and V. Kumar. Minimum snap trajectory generation and control for

quadrotors. In Robotics and Automation (ICRA), pages 2520–2525. IEEE, 2011.

[9] A. Isidori, C.H. Moog, and A. De Luca. A sufficient condition for full linearization

via dynamic state feedback. In Decision and Control, pages 203–208. IEEE, 1986.

[10] M.-D. Hua, T. Hamel, P. Morin, and C. Samson. A control approach for thrust-

propelled underactuated vehicles and its application to vtol drones. Automatic

Control, pages 1837–1853, 2009.

[11] M.-D. Hua, T. Hamel, P. Morin, and C. Samson. Introduction to feedback control

of underactuated vtol vehicles. In Control Systems, pages 61–75. IEEE, 2013.

74

Bibliography 75

[12] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics Modelling, Planning

and Control. Springer, 2008.

[13] M.G. Park, J.H. Jeon, and M.C. Lee. Obstacle avoidance for mobile robots using ar-

tificial potential field approach with simulated annealing. In Industrial Electronics,

pages 1530–1535. IEEE, 2001.

[14] D. Zhou and M. Schwager. Vector field following for quadrotors using differential

flatness. In Robotics and Automation (ICRA), pages 6567–6572. IEEE, 2014.

[15] N. Abas, A. Legowo, and R. Akmeliawati. Parameter identification of an au-

tonomous quadrotor. In Mechatronics (ICOM), pages 1–8. IEEE, 2011.

[16] T. Lee, M. Leok, and N.H. McClamroch. Geometric tracking control of a quadrotor

uav on se(3). In Decision and Control (CDC), pages 420–5425. IEEE, 2010.

	Abstract
	List of Figures
	Abbreviations
	Symbols
	1 Introduction
	1.1 Motivations and objectives
	1.2 Overview

	2 Modelling and control
	2.1 Quadrotor dynamics
	2.1.1 Configuration definition
	2.1.2 Complete quadrotor model
	2.1.3 Assumptions and simplifications

	2.2 Dynamic feedback linearization
	2.2.1 Introduction
	2.2.2 Application to quadrotor model

	3 Navigation and obstacle avoidance
	3.1 Driving inputs
	3.1.1 First-order feed-forward
	3.1.2 Towards feasibility of inputs

	3.2 Obstacle avoidance
	3.2.1 Artificial potential fields
	3.2.2 Application to quadrotor

	4 Simulation results
	4.1 Numerical simulations
	4.1.1 DFL tests
	4.1.2 Obstacle avoidance tests
	4.1.3 DFL with obstacle avoidance tests

	4.2 Dynamical simulations
	4.2.1 Circle tracking
	4.2.2 Travelling in labyrinth

	5 Experimental results
	5.1 Hardware system
	5.1.1 Quadrotor
	5.1.2 RGB-D sensor

	5.2 Parameters estimation
	5.2.1 Speed conversion
	5.2.2 Thrust coefficient
	5.2.3 Drag coefficient and moments of inertia

	5.3 Data filtering
	5.3.1 Median filter
	5.3.2 Average filter
	5.3.3 Polynomial fitting

	6 Conclusions
	A Rotation matrix
	A.1 Derivative of rotation matrix

	B Lie derivative
	C Inertia matrix
	C.1 Solid cuboid
	C.2 Solid cylinder

	D Point reprojection
	Bibliography

