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Abstract— Emergency situations in large public and res-
idential buildings, earthquake, fire, flood, terrorist attacks,
cause extreme physical and emotional behaviours, inter alia,
anxiety, hyperactivity, anger, etc.; in these situations, people are
often unable to take the right action or even unable to make
a decision. This paper addresses the problem of generating
a building evacuation plan with the help of a Y6 coaxial
tricopter UAV in an emergency situation where GPS signal is
not available. The proposed algorithm, stochastic Q-Learning,
learns the shortest path to leave the building. The traditional
2D space navigation is extended to the challengeable 3D space,
which makes our approach more applicable in the real world.
The emergency evacuation system proposed in herein can
navigate people to evacuate a building safely in the wake of
an emergency situation.

I. INTRODUCTION

In the last decades, technological developments in sensor,
actuator and microcontroller industries have paved the way
from autopilots to unmanned aerial vehicles (UAVs) where
the pilot is not needed anymore. Especially, in risky envi-
ronments, it is appealing to be able to execute a mission in
a fully autonomous way. Consequently, UAVs are gaining
increasing interest because of their limitless military and
commercial applications, e.g., disaster rescue [1], infrastruc-
ture inspection [2] and map reconstruction [3]. Regardless
of the assigned task, the main aim of a UAV is to perform
that task safely and efficiently. A critical task is considered
in this paper, the autonomous evacuation, which refers to the
capability of selecting and following a path from a current
position to a safe final position with the help of a UAV.
However, the target’s location is often either invisible or
unidentified. The problem of controlling UAVs in an un-
known and uncertain environment is of essential importance
in many applications [4].

Even if, as human-beings, our inventiveness can reach
extreme levels and we have highly capable computers, nature
still has the best source of engineering designs. For example,
it is no coincidence that the nose of an aeroplane is very
similar to that of a dolphin. Not only the physical appearance
but also the behaviour of animals is opening the doors
for new theories. Just like the learning process in nature,
reinforcement learning (RL) is based on the past experiences.
Therefore, RL is a learning technique based on the common
sense concept: if an action is performed an adequate number
of times, then the tendency to remember the consequence of

that action is reinforced. In RL, the learner is a decision-
making agent who makes observations, takes actions and
receives rewards or penalties. Besides, RL approach relies
on the theory of Markov decision processes (MDP) [5].

In this paper, we focus our attention on a special RL
algorithm called Q-Learning that can learn the optimal policy
from delayed rewards. Q-Learning algorithm has numerous
successful applications, e.g., game learning [6], optimisation
problems [7] and financial applications [8]. Moreover, un-
like common model-based approaches, Q-Learning does not
require any information about the model or the environment
[9]. This is the reason why Q-Learning is suitable for the
cases which are difficult to determine a priori, complex to
program or impossible to use in time-varying environments.
In light of its aforementioned capabilities, Q-Learning is an
appropriate choice for the high-level UAV controller.

In this investigation, the agent for Q-Learning is a Y6
coaxial tricopter vertical take-off and landing (VTOL) UAV.
Y6 configuration has some advantages: for instance, if one
motor or electronic speed controller fails, the system can still
land safely. On the other hand, tricopters have a significant
disadvantage such as having highly nonlinear dynamics. In
spite of this disadvantage, Y6 coaxial tricopter is chosen
for this implementation since the proposed Q-Learning algo-
rithm compensates the aforementioned disadvantages while
benefiting from the safe structure of the system.

To the best of our knowledge, this is the first time in
the literature that the Q-Learning is used for the UAV’s
evacuation navigation. Our proposed method provides the
optimal path selection for a tricopter-like aircraft in an in-
door unknown grid environment. The emergency evacuation
system proposed in herein can navigate people to evacuate a
building safely in the wake of an emergency situation. The
algorithm takes state transition and reward functions as an
input and then learns the shortest path, made up of a set of
actions, to leave the building. In addition, the UAV learns
the map of the environment.

This paper is structured as follows. Section II briefly
reviews MDP and Q-Learning algorithm. In Section III we
present the Y6 tricopter’s dynamic model and the control
scheme for the velocity tracking. Section IV describes the
evacuation problem and provides dynamical simulations for
evaluating the efficiency of our solution. Finally, Section V
closes this paper with conclusions and future works.



II. MARKOV DECISION PROCESS AND Q-LEARNING

A. Markov Decision Process

Given a set of states S, a set of actions A and a set of
rewards R, a controlled process with dynamics of Markov is
defined as follows:{

st+1 = δ (st, at)

rt = r (st, at)
, t = 0, 1, . . . , (1)

where st ∈ S is the state of the agent at time t, at ∈ A is the
action taken by the agent in the state st and rt ∈ R is the
reward observed after performing the action at in the state
st. The goal is to maximise the expected total discounted
reward starting from the initial state s0:

max
s∈S

E

[ ∞∑
t=0

γtrts0 = s

]
, (2)

where γ ∈ [0, 1] is the discount factor. The process
(st, at, rt; t ≥ 1) is called Markov decision process (MDP).

Let Vπ(s) denotes the value of state s under a policy π,
and it is the expected return given that the policy is started in
state s. Consequently, the optimal value of a state is the value
of the best possible expected return that can be obtained from
that state and it is denoted by V∗(s) = supπ V

π(s).

B. Q-Learning Algorithm

A particular model-free RL technique, Q-Learning, can
be used to compute an optimal policy for an MDP (1).
It learns a state-action function Q(s, a) which gives the
expected desirability of performing an action a in a state s.
Once Q function is learned, the optimal policy π∗(s) can be
computed by simply choosing the action a with the highest
value. Besides, Q-Learning always finds an optimal policy
for MDP (1) [10]. In our work we use Q-Learning technique
for non-deterministic cases to solve the evacuation problem.

Each time the agent performs an action a ∈ A in its
environment, it moves from state s ∈ S to state s′ ∈ S and
receives a reward r ∈ R to indicate the desirability of the
resulting state s′. The agent’s goal is to maximise the total
received reward. It achieves this by learning which action
is optimal in every state. Therefore, the algorithm needs
Q function which contains the desirability of a state-action
combination:

Q : S ×A→ R. (3)

The basic Q-Learning scenario is shown in Fig. 1.
Initially, Q is set to 0 for all state-action pairs. Then, each

time the agent performs an action, the Q function is updated.
It takes the old value and makes an update based on the new
information:

Qt+1 (st, at) = Qt (st, at)+

αt

[
rt + γtmax

a′
Qt (st+1, a

′)−Qt (st, at)
]
, (4)

where αt ∈ [0, 1] is the learning rate. An episode ends when
state st is a final state. The pseudo-code of the Q-Learning
is given in Algorithm 1.

Environment

Agent

Reward

State

Action

Fig. 1. The basic reinforcement learning scenario.

III. Y6 TRICOPTER DYNAMICS

A. Y6 Tricopter Model

Let the world fixed inertial reference frame be FW =
{~xW , ~yW ,~zW } and the body frame be FB = {~xB , ~yB ,~zB}.
The origin of the body frame is located at the centre of
mass (COM) of the tricopter. The tricopter configuration with
reference frames is illustrated in Fig. 2. The six propellers
generate six forces (f1, f2, f3, f4, f5 and f6), directed along
~zB , and six torques (τ1, τ2, τ3, τ4, τ5 and τ6) with the module
proportional to the speed of rotation.

The vector of control inputs is considered directly as [12]:

u =
[
T τφ τθ τψ

]T
, (5)

where T is the total thrust directed along ~zB and applied
to its center of mass, whereas τφ, τθ and τψ are the three
rotational torques acting around ~xB , ~yB and ~zB axes,
respectively. Under these considerations, the relation between
u and ωi, i = 1, . . . , 6, becomes:

T = f1 + f2 + f3 + f4 + f5 + f6

τφ = l
(
− sin π

3 (f3 + f4) + sin π
3 (f5 + f6)

)
τθ = l

(
f1 + f2 − cos π3 (f3 + f4 + f5 + f6)

)
τψ = τ1 − τ2 + τ3 − τ4 + τ5 − τ6,

(6)

where l is the arm length.
The absolute position of a tricopter is described by three

Cartesian coordinates p =
[
x y z

]T
of its COM in FW

Algorithm 1 Q-Learning algorithm.
1: Initialize all Q(s, a) to 0
2: for all episodes do
3: Choose a state s ∈ S
4: while s 6= terminal state do
5: Choose an action a ∈ A
6: s′ ← δ(s, a)
7: r ← r(s, a)
8: Q(s, a) ← Q(s, a) −
α [r + γmaxa′ Q(s′, a′)−Q(s, a)]

9: s← s′

10: end while
11: end for
12: for all states s do
13: π(s)← {a|maxaQ(s, a)}
14: end for
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Fig. 2. Y6 tricopter model with reference frames.

and its attitude by the three Euler’s angles o =
[
φ θ ψ

]T
.

These three angles are respectively called roll, pitch and yaw.
The time derivative of the position gives the absolute ve-

locity v =
[
ẋ ẏ ż

]T
=
[
vx vy vz

]T
of the tricopter’s

COM in FW . Let vB ∈ R3 be the absolute velocity of the
tricopter in FB . Therefore, v and vB are related by

v = RvB , (7)

where R ∈ SO(3) is the rotation matrix from FB to FW :

R =

cψcθ cψsφsθ − cφsψ sφsψ + cφcψsθ
cθsψ cφcψ + sφsψsθ cφsψsθ − cψsφ
−sθ cθsφ cφcθ

 , (8)

where cθ and sθ denote respectively cos θ and sin θ. The
time derivative of the attitude gives the angular velocity
ω =

[
φ̇ θ̇ ψ̇

]T
in FW and the angular velocity ωB =[

ωφ ωθ ωψ
]T

in FB . The relation between ω and ωB is

ω = TωB , (9)

in which T is the transformation matrix given by [11]

T =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ

 . (10)

Using the Newton-Euler equations about the COM, the
dynamic equations for the tricopter are the following [13]:{

mv̇ = Fe

Iω̇B = −ωB × IωB + τ e,
(11)

where m is the mass, I = diag(Ix, Iy, Iz) is the inertia
matrix, τ e =

[
τφ τθ τψ

]T
is the vector of external

torques and Fe is the vector of external forces [14]:

Fe =

− (cosφ sin θ cosψ + sinφ sinψ)T
− (cosφ sin θ sinψ − sinφ cosψ)T

− cosφ cos θT +mg

 , (12)

in which g is the gravity acceleration (g = 9.81m/s2).
Finally, using dynamic and kinematic differential equations

(7), (9) and (11), the tricopter model is obtained [15]

ẋ = vx v̇x = − cφcψsθ+sφsψm T

ẏ = vy v̇y = − cφsψsθ−cψsφm T

ż = vz v̇z = − cφcθm T + g

φ̇ = ωφ + sφtθωθ + cφtθωψ ω̇φ =
Iy−Iz
Ix

ωθωψ + 1
Ix
τφ

θ̇ = cφωθ − sφωψ ω̇θ =
Iz−Ix
Iy

ωφωψ + 1
Iy
τθ

ψ̇ =
sφ
cθ
ωθ +

cφ
cθ
ωψ ω̇ψ =

Ix−Iy
Iz

ωφωθ +
1
Iz
τψ,
(13)

where tθ denotes tan θ.

B. Control Scheme

For the velocity tracking, we use the nonlinear geometric
controller on the special Euclidean group SE(3) [16]. If
v∗ =

[
v∗x v∗y v∗z

]T
is the desired velocity, the error for

the velocity is given by ev = v − v∗.
We want the tricopter to point towards the direction of

the movement. Therefore, the desired direction of the first
body-fixed axis is

~x∗B =
[
v∗x v∗y 0

]T
. (14)

Now, the desired direction of the second and third body-fixed
axes can be computed{

~z∗B = −kvev−mge3

‖−kvev−mge3‖

~y∗B =
~z∗B×~x

∗
B

‖~z∗B×~x∗B‖
,

(15)

where kv is some positive constant and e3 =
[
0 0 1

]T
.

We also assume that ~x∗B is not parallel to ~z∗B .
The rotation matrix for the desired attitude is

R∗ =
[
~y∗B × ~z∗B ~y∗B ~z∗B

]
∈ SO(3). (16)

The attitude error is chosen to be

eR =
1

2

[
R∗TR−RTR∗

]∨
, (17)

where ∨ is the vee map: SO(3) → R3. The tracking error
for the angular velocity is

eω = ωB −RTR∗
[
R∗T Ṙ∗

]∨
. (18)

Finally, the control inputs (5) are chosen as follows:{
T = (kvev +mge3)

T
Re3

τ e = −kReR − kωeω + ωB × IωB ,
(19)

where kv, kR and kω are some positive constant gains. The
overall structure of the controller is illustrated in Fig. 3.

Velocity
Control Attitude

Control

Tricopter
Dynamics

v∗
T

R∗ τ e

vRωB

p

Fig. 3. Control system for the Y6 tricopter UAV.



IV. SIMULATION RESULTS

A. Learning Approach

In this paper, the learning task consists in generating
an evacuation plan from a building to help people in an
emergency situation. An example of the top view of a
building is depicted in Fig. 4a. Every door and window can
be either open or closed, and their state might change over
the time.

By applying the Algorithm 1, the agent, a Y6 tricopter
UAV in this case, will learn through experience. According to
our scenario, the agent can pass from one cell to the adjacent
cell, but has no knowledge of the environment.

To simplify the learning task, the environment map is
considered as a grid map (the grid map for the building in
Fig. 4a is shown in Fig. 4b). For each cell of the grid world
corresponds a state in the set of states S. So, if the dimension
of the map is dx× dy × dz , we have dx · dy · dz states. Each
state is characterized by three parameters (sx ∈ [1, . . . , dx],
sy ∈ [1, . . . , dy] and sz ∈ [1, . . . , dz]) corresponding to the
coordinate of the cell. In our case, the floor is divided into
five levels. Therefore, the map is composed by 20×20×5 =
2000 cells. One cell on the map is a cube of about 1m3.

In each state, the agent can perform six actions: move
forward, move backwards, move right, move left, move up
and move down. If the agent has a wall in front, it can even
move forward, but it will crash obtaining a negative reward.
The transition function is non-deterministic: when the agent
wishes to go forward, there exists a non-zero probability of
ending up in an adjacent cell or even remain in the starting
cell.

The goal cells have a positive reward +100 whereas the
walls have negative rewards −1. The door or the window can
either have null rewards, if it is open during the passage, or,
like in the case of walls, negative rewards −1, if it is closed.
The empty cells give no reward.

B. Training

In each training episode, the UAV starts from a known
initial position p0 which is chosen randomly among all free
cells. We use the variable learning rate αt in (4):

αt =
1

1 + visitt(s, a)
, (20)

(a) A sample of a building plan. (b) The grid map of the building.

Fig. 4. An example of a building plan in Fig. 4a and the correspondent
grid map for the second level in Fig. 4b.

where visitt(s, a) is the number of times state-action pair
(s, a) was visited up to time t. Moreover, the discount
factor γ is constant and equal to 0.9. The next action
performed by the agent is chosen by combining exploitation
and exploration:

P(ai|s) =
kQ(s,ai)

6∑
j=1

kQ(s,aj)

, i = 1, . . . , 6, (21)

where k > 0 determines how strongly the selection favours
exploration over exploitation and it increases monotonously
over time. During the exploitation stage, an action a that
maximises Q(s, a) is selected, while during the exploration
stage, an action a that minimises Q(s, a) is selected.

In order to evaluate quantitatively the efficiency of the
obtained solution, we compute the distance to the closest
emergency exit for each step. As can be seen from Fig. 5,
the distance to an exit increases during the exploration (blue
curve), while the distance decreases with steps during the
exploitation (green, pink and yellow curves).

In Fig. 6 the learning process is shown. The brightness
of each cell indicates the number that the UAV visited
that cell. Before the learning starts, the map is completely
monotonous, like in Fig. 6a. During the exploration stage,
shown in Fig. 6b, the UAV tries to discover entire map. After
the exploitation stage starts, the UAV follows more and more
often the optimal trajectory. In Fig. 6c we can see that the
cells closer to an exit are, the higher number of visits they
have.

After 2 × 106 iterations, the optimal policy is learned.
Q-Learning algorithm provides the optimal path based on
the highest value of the function Q(s, a) (4) among the six
actions in the grid world. The graphical representation of the
optimal actions is shown in Fig. 7 for each floor level (Fig. 7a
for level 1, Fig. 7b for level 2 and Fig. 7c for level 3). The
UAV has six possible movements in each cell. On the map,
each movement is represented by a different symbol: move
forward (↑), move backwards (↓), move right (→), move left
(←), move up (·) and move down (◦).
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Fig. 5. The distance to the closest exit.



(a) After 0 episodes (b) After 2× 105 episodes (c) After 2× 106 episodes

Fig. 6. The histogram map of the number of visits for the second level of the building in Fig. 4b. On the left, the initial map, in the middle, the exploration
stage, and, on the right, the exploitation stage. Brighter is the cell’s colour, more times the cell was visited.
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Fig. 7. The graphical representation of the optimal policy. Each movement is represented by a different symbol: move forward (↑), move backwards (↓),
move right (→), move left (←), move up (·) and move down (◦). Green cells are safe cells.

C. Dynamical Simulations

For the dynamical simulations, the tricopter model is
implemented in ROS and Gazebo simulator. The tricopter
intrinsic parameters are reported in Table I. These parameters
are chosen close to the ones of a real tricopter. The UAV’s
position is measured with a simulated sensor. The attitude
and angular velocities are provided by the simulated IMU.

In Fig. 8 the 3D model of the building is shown which
plan was depicted in Fig. 4a. Figure 8 shows also the optimal
trajectory, computed with Q-Learning, from different cells
to the best emergency exit. The red dots indicate the initial
position inside the building, the green dots indicate the final
safe position outside the building.

TABLE I
UAV’S INTRINSIC PARAMETERS.

Parameter Value Unit
Ix 3× 10−2 [kg ·m2]
Iy 6× 10−2 [kg ·m2]
Iz 3× 10−2 [kg ·m2]
l 2× 10−1 [m]
m 1.8 [kg]

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we present a solution for ensuring a safe
and autonomous evacuation in an unknown structured grid
environment by using a tricopter UAV. Hence, the main task
is the generation of the optimal building evacuation route
in an emergency situation. Thus, we rely on the stochastic
Q-Learning technique which uses the rewards from the envi-
ronment to learn the optimal policy for the UAV’s evacuation.
In other words, our algorithm takes a state transition function
and a reward function as the input, and learns how to leave
a building where the agent resides. Finally, the UAV learns
the optimal policy for each grid cell of the building.

In the future, the function Q(s, a) can be represented with
an artificial neural network (ANN) instead of a look-up table.
The inputs to the ANN will be the four positive integers:
three for x, y and z coordinates of the cell correspondent to
the state s and one for the action a. The output will have two
values: one representing Q(s, a) and the other visit(s, a).
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Fig. 8. UAV’s optimal trajectories to the closest exit from different initial locations. The red dots indicate the initial position inside the building, the green
dots indicate the final safe position outside the building.
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